
Kevin Skadron
Harry Douglas Forsyth Professor

University of Virginia
Dept. of Computer Science

Processing in Memory for
Energy-Efficient Computing

This work is supported in part by CRISP and PRISM, centers in JUMP 1.0 and 2.0, Semiconductor Research Corporation (SRC) programs sponsored by DARPA;
grants from the NSF and Booz Allen Hamilton, and MIST - an NSF I/UCRC center1

• Academia – tendency to look where the light - and tools - are
good
• Good tools enable expansion for a new research area
• Key enabler for research we want to do ourselves
• Helps make it easier to compare research results

• Developing these tools (simulators, benchmarks, etc.) is
rewarding
• Fun research and helps the community
• High citation counts illustrate the impact

Why we work on ModSim
(from an academic perspective)

2

• Finding the right primitives and flexibility is key to success
• Successful example: thermal
• HotSpot derived from first principles, model wide variety of designs,

simple abstractions for modeling diverse architectures
• Relies on external tools for power modeling, e.g. McPAT, and floorplan (ArchFP)
• People can use other tools, e.g. CAD tools

• Allowed us to publish several papers on thermal management
• But many more published by others

• Unfortunately, failed to build collaborative development community
• Instead – semi-competing teams and tools

• Competition isn’t necessarily bad! In HotSpot’s case, incorporated some external models
into unified framework

ModSim observations

3

• Disappointing example: feedback control theory for dynamic
adaptation
• We used it in our thermal and power management techniques
• But didn’t find a general abstraction to make it easy to use with diverse

architecture components
• So not well explored in the architecture community

• In-between example: automata processing (VASim, AutomataZoo,
etc.)
• Developed simulation framework and benchmarks, continuing low-level use
• I think we got the abstractions and infrastructure about right
• But area remains small

ModSim observations, cont.

4

• Early work – ad hoc models and benchmarks – crude and non-portable
• Researchers just want to evaluate their architectural idea
• Too early to think about building a community
• But high barrier to entry in this research topic

• Somebody takes initiative to build general framework
• Tipping point: area gains momentum à framework is adopted by others à helps area

gain further momentum
• Tools lower barrier to entry

• Iterative development and support
• This is often insufficiently supported by funding, publication opportunities, community
• Tragedy of the commons, often simply a labor of love

• Gradual atrophy
• PIs lose interest/move on, insufficient funding, popular research areas change, etc.
• Building a development community can help with this

• Help new users take ownership for continued support, relevance, and success
• Gem5 has been a role model in this
• Funding and recognition remain challenges

• External dependencies may atrophy too!

Modeling lifecycle

5

Modeling lifecycle

7

Gartner hype cycle (Wikipedia)

Time

users,
papers

Technology trigger

Peak of research area

Plateau of
productivity

Trough
of atrophy

Resurrection
(new supporters
or new use cases)

Community support

PIM

Early/crude/non-portable tools

Valley of death

• Many important applications bottlenecked by memory
• Memory wall! (Term coined at UVA in mid-90s by Bill Wulf and Sally McKee)

• Data-access bandwidth available inside DRAM >> I/O bandwidth
• Spend lots of time and energy moving data - only to discard it
• Eg, filtering in database table scan

• Energy efficiency is critical to success of computing field
• From embedded systems to AI data centers

• Perhaps we can have our cake and eat it too – better performance
and lower energy

Why Processing in Memory (PIM)?

8

• It was a hot topic many years ago and died out!
What’s new?
• Pain and opportunity

• Pain back then: mitigated by improvements in caching, prefetching, etc. – also GPUs
• Pain now: Slowdown in Moore’s Law, explosion in data, poor cache behavior, memory

bottlenecks much more widespread, data center energy concerns
• Lack of opportunity then: lack of killer app, no clear market
• Opportunity now: Broad interest in accelerators; no other accelerator directly targets

memory bottleneck
• Potential market - GEMV

• PIM is just another accelerator - tackles the memory bottleneck
• Happens to use DRAM as the implementation
• But special in the potential to leverage existing DRAM market

• What is the “killer app” that will create a market?

Why PIM now?

9

• Memory first - PIM for commodity DRAM – “memory++”
• Compatible with existing/near-term memory standards
• But this limits design flexibility, e.g. regarding address interleaving, PIM logic

overhead
• Data layout and transformations may still require considerable data movement

• Data movement/transformation can kill benefits of PIM
• Allows incremental deployment

• Accelerator-first – DRAM as implementation technology for data-parallel
accelerator
• Can still be used as memory, but optimized for PIM

• Allows much greater design flexibility: trade off capacity, maybe R/W perf for PIM
• Can change interleaving, etc.

• Still want to try to avoid copying data back and forth btw. main memory and PIM
• Could be deployed in regular memory slots or CXL

PIM vs. DRAM-based accelerator

10

• In memory controller on processor
chip
• In interface logic of DIMM or

in logic layer of 3D stack
• Bank-level
• Subarray-level
• On the bitlines

Taxonomy of near-data/PIM in DRAM
Cl

os
er

 to
 d

at
a

11

Bank

PE

Bank

PE

Bank

PE

Bank

Chip

PE
2

PE

SubArray
Sense Amps

1 Chip

Bank
Bank

Bank
Bank

SubArray
Sense Amps

Compute Slice

SubArray
Sense Amps

...

...

...

PE

Host Memory
 controller

1

PE
1

• Samsung Aquabolt
• SK Hynix AiM
• UPMEM

Notable early PIM
products–all bank level

12

(all images taken from vendor information on the Internet)

• Keeps compute very close to data – very low energy, minimizes
long global wires
• Can operate on entire row buffer (~4-8 Kbits)

between each DRAM row access
• Logic ops can happen much faster than row read/write

• Potential for parallelism across
subarrays + banks
• Beneficial even if only added to one subarray per bank
• Academic work has shown potential for both
• Analog - requires triple row activation and other

changes, but little/no circuitry at subarray row buffer
• Digital - uses traditional read/write, places some

gates at interface to row buffer
• Can be 1) bit-serial, row-parallel or 2) scalar, bit-parallel

Why subarray level (“in-situ”)?

narrow: 64-256 bits

Bank row bufferGlobal row buffer

Banks

13

wide: 4K-8K bits

DRAM-AP: General bit-serial Associative Processing
(IISWC’24)

● Vertical data layout (so far)
● Bit-serial logic in subarrays

○ With a few 1-bit registers
○ Only need a few primitives to

obtain considerable speedup
● Vector computing model
● Programmable micro-ops

● Working on an approach that
minimizes changes to data layout

Ro
w

 D
ec

od
er

DRAM SubArray

SA SA SA

B
S

Lo
gi

c

SA SA SA SA SA SA SA

B
S

Lo
gi

c
B

S
Lo

gi
c

B
S

Lo
gi

c
B

S
Lo

gi
c

B
S

Lo
gi

c
B

S
Lo

gi
c

B
S

Lo
gi

c
B

S
Lo

gi
c

B
S

Lo
gi

c

M
ic

ro
-o

ps
 C

on
tr

ol
le

r

V-Layout Data Vector 2

V-Layout Data Vector 1

. . .

Bit-serial Logic Unit

D Q
Reg R1

D Q
Reg R2C

om
bi

na
tio

na
l L

og
ic

opcode
[0:5]

DRAM
clock

sa_in sa_out

Sense Amp

14

• Bit-serial: no support for data dependencies, conditional operations,
sparse access, etc.; high overhead for multiplication
• Key insights: 1) leverage row-wide fetch but avoid high area cost and

functional limitations of row-wide logic; 2) leverage faster column
cycle time vs. row cycle time
• Fulcrum solutions:
• Word-granularity ALU
• Shift-based access

• Row bufferàwalker
• Simple controller

• Issuing shifts based
on a predicate

• Programmable,
semi-general-purpose

Fulcrum: Flexible, word-granularity, subarray-level PIM
[HPCA’20, in collaboration with UCSB and Micron]

15

Subarray 1

 G
DL

Subarray 2

In
st

ru
ct

io
n

bu
ffe

r
(P

re
-d

ec
od

ed
 s

ig
na

ls
)

Co
nt

ro
l u

ni
t

 G
DL

Ro
w

 d
ec

od
er

Re
gi

st
er

s
AL

U

(a) Overall architecture of each subarray (b) AddressLess Processing Unit (ALPU)

Ad
dr

es
sL

es
s

Pr
oc

es
in

g
Un

it
(A

LP
U)

Walker1
Walker2
Walker3

Walker1
Walker2
Walker3

Row address, select,
and shift signals

Data Selector

Shift

• Online analytics processing (OLAP) - huge market for potential accelerator
• eg, Google found that BigQuery, consumed about 10% total cycles within the fleet

• Memory bound: typical query scans all records yet selects only a small subset
• CPU fetches all records into CPU, mostly performs only simple/range comparisons
• Then throws away most of them, wasting lots of time and energy

Low-hanging fruit: database table scans for OLAP
(joint w/ Jignesh Patel, CMU and José Martínez, Cornell, and our students:
Akhil Shekar, Lingxi Wu, Kevin Gaffney, Martin Prammer, and Helena Caminal)

16 Table Scan: Apply selection predicates on the dimension table for the “WHERE” clause

Transaction Table

Dimension
Tables

• Denormalization: joins are expensive, so prejoin everything, create one WideTable
• Used in some industry products

• Denormalization yields almost 2X speedup in DuckDB
• PIM yields almost 4X further speedup

Key insight: convert joins to table scan

17

• Even with bank-level PIM,
bottleneck is fetching
selected records
• More aggressive PIM

doesn’t help
• Bank-level unit can be tiny
• Just equality and range checking

Data analytics: Bank-level PIM sufficient!

18

• PIMeval simulator
• Just released
• Abstract model of PIM

processing unit
• Can be integrated

anywhere in DRAM
hierarchy
• Can specify PIM-PU

functional capabilities
• Also models data allocation,

copying, etc.
• Performs both functional and performance modeling

• Performance model derived from DRAMsim3

Evaluating PIM design space (IISWC’24)

19

Device Creation

PIM
 Sim

ulator Library C
/C

++ Interface

Resource
Allocation

Data Copying

PIM Computation

PIM
 D

evice

PIM Processing Unit

PIM Processing Unit

PIM Processing Unit

PIM Resource Mgr

PIM Commands

Perf
Model

PIM Simulator C/C++ Library

...

PIM C/C++ App

Data Copying

PIMbench benchmark suite
(continuing to add new benchmarks)

20

• Designed an API for writing PIM programs that is portable across PIM
architectures

PIM API

21

• Fulcrum is scalar, bank-level is 128-bit SIMD
• Assumes data must be copied into PIM memory—significant overhead
• Bit-serial fastest on Boolean, addition
• Fulcrum fastest on everything else
• Bank-level limited by narrow bank interface

PIM architecture comparison – vs CPU

22

0.001

0.01

0.1

1

10

100

1000

10000

100000

V
ec

to
r A

dd
it

io
n

A
X

P
Y

G
EM

V

G
EM

M

R
ad

ix
 S

or
t

A
ES

-E
nc

ry
pt

io
n

A
ES

-D
ec

ry
pt

io
n

Tr
ia

ng
le

 C
ou

nt

Fi
lt

er
-B

y-
K

ey

H
is

to
gr

am

B
ri

gh
tn

es
s

Im
ag

e
D

ow
ns

am
p

lin
g

K
N

N

Li
ne

ar
 R

eg
re

ss
io

n

K
-m

ea
ns

V
G

G
-1

3

V
G

G
-1

6

V
G

G
-1

9

G
m

ea
n

V
ec

to
r A

dd
it

io
n

A
X

P
Y

G
EM

V

G
EM

M

R
ad

ix
 S

or
t

A
ES

-E
nc

ry
pt

io
n

A
ES

-D
ec

ry
pt

io
n

Tr
ia

ng
le

 C
ou

nt

Fi
lt

er
-B

y-
K

ey

H
is

to
gr

am

B
ri

gh
tn

es
s

Im
ag

e
D

ow
ns

am
p

lin
g

K
N

N

Li
ne

ar
 R

eg
re

ss
io

n

K
-m

ea
ns

V
G

G
-1

3

V
G

G
-1

6

V
G

G
-1

9

G
m

ea
n

V
ec

to
r A

dd
it

io
n

A
X

P
Y

G
EM

V

G
EM

M

R
ad

ix
 S

or
t

A
ES

-E
nc

ry
pt

io
n

A
ES

-D
ec

ry
pt

io
n

Tr
ia

ng
le

 C
ou

nt

Fi
lt

er
-B

y-
K

ey

H
is

to
gr

am

B
ri

gh
tn

es
s

Im
ag

e
D

ow
ns

am
p

lin
g

K
N

N

Li
ne

ar
 R

eg
re

ss
io

n

K
-m

ea
ns

V
G

G
-1

3

V
G

G
-1

6

V
G

G
-1

9

G
m

ea
n

Bit-Serial Fulcrum Bank-level

S
p

ee
d

up

Kernel + Data Movement Kernel

• DDR-based PIM has difficulty competing with A100 GPU
• Takes many ranks to match bandwidth of GPU with 4 stacks of HBM
• Note GEMV result here is flawed – data too small

PIM architecture comparison-GPU

23

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

Ve
ct

or
 A

dd
iti

on

AX
PY

GE
M

V

GE
M

M

Ra
di

x S
or

t

AE
S-

En
cr

yp
tio

n

AE
S-

De
cr

yp
tio

n

Tr
ia

ng
le

 C
ou

nt

Fi
lte

r-
By

-K
ey

H
is

to
gr

am

Br
ig

ht
ne

ss

Im
ag

e
Do

w
n

Sa
m

pl
in

g

KN
N

Li
ne

ar
 R

eg
re

ss
io

n

K-
m

ea
ns

VG
G

-1
3

VG
G

-1
6

VG
G

-1
9

Gm
ea

n

Sp
ee

du
p

Bit-serial Fulcrum Bank-level

32 ranks

• Energy efficiency win for most benchmarks vs. CPU
• Also beats GPU on subset of benchmarks

But PIM has significant energy efficiency
benefits

24

0.01

0.1

1

10

100

1000

Ve
ct

or
 A

dd
iti

on

AX
PY

GE
M

V

GE
M

M

Ra
di

x S
or

t

AE
S

-E
nc

ry
pt

io
n

AE
S-

De
cr

yp
tio

n

Tr
ai

ng
le

 C
ou

nt

Fi
lte

r-
By

-K
ey

H
is

to
gr

am

Br
ig

ht
ne

ss

Im
ag

e
Do

w
ns

am
pl

in
g

KN
N

Li
ne

ar
 R

eg
re

ss
io

n

KM
ea

ns

VG
G

-1
3

VG
G

-1
6

VG
G

-1
9

GM
ea

n

En
er

gy
 R

ed
uc

tio
n

Bit-serial Fulcrum Bank-level

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

Ve
ct

or
 A

dd
iti

on

AX
PY

GE
M

V

GE
M

M

Ra
di

x S
or

t

AE
S

-E
nc

ry
pt

io
n

AE
S-

De
cr

yp
tio

n

Tr
ai

ng
le

 C
ou

nt

Fi
lte

r-
By

-K
ey

H
is

to
gr

am

Br
ig

ht
ne

ss

Im
ag

e
Do

w
ns

am
pl

in
g

KN
N

Li
ne

ar
 R

eg
re

ss
io

n

K-
m

ea
ns

VG
G

-1
3

VG
G

-1
6

VG
G

-1
9

Gm
ea

n

En
er

gy
 R

ed
uc

tio
n

Bit-serial Fulcrum Bank-level

• Software ecosystem and portability are key to success
• Good programming model and libraries were key to GPU successes

• Not yet clear which of these PIM architectures is most promising
• Want a design that combines benefits of each

• Exploring how to integrate with gem5 for full-system simulation
• System integration is hard

• How to communicate with CPU? (Eg, how does a PIM program run?)
• Memory allocation (PIM requires specific data layout, esp. for subarray-level)
• Memory consistency (SC, TSO, etc. – what is contract with PIM programmer?)
• Cache coherence
• Multi-tenancy
• Etc.

• Debugging support is also needed for practical adoption

Observations and Open issues

25

• A “tools-first” research agenda is rewarding
• Enables fun research and the tools have external impact

• To have external impact, tools need to be highly flexible and easy to
use
• Other researchers will use them in ways you never expected

• PIM shows promise to accelerate key compute tasks while saving
energy
• Data analytics and GEMV as potential early killer apps

Concluding thoughts

26

UVA team effort!

Alif Ahmed

Marzieh Lenjani Akhil Shekar Farzana Siddique

Mircea Stan Lingxi Wu

Beenish Gul

Khyati Kiyawat

Abdullah Mughrabi

Zhenxing XiMohammadhosein
Gholamrezaei

Sergiu MosanuMorteza Baradaran

Ashish Venkat

Deyuan GuoHugo Abbot Kyle Durrer Ethan Ermovick Kumaresh
Nandagopal

