UNIVERSITY COMPUTER
JVIRGINIA

Processing in Memory for
Energy-Efficient Computing

Kevin Skadron
Harry Douglas Forsyth Professor

University of Virginia
Dept. of Computer Science

This work is supported in part by CRISP and PRISM, centers in JUMP 1.0 and 2.0, Semiconductor Research Corporation (SRC) programs sponsored by DARPA;
grants from the NSF and Booz Allen Hamilton, and MIST - an NSF I/UCRC center

Why we work on ModSim .
(from an academic perspective) A

Academia — tendency to look where the light - and tools - are
good

* Good tools enable expansion for a new research area

* Key enabler for research we want to do ourselves

* Helps make it easier to compare research results

Developing these tools (simulators, benchmarks, etc.) is
rewarding

* Fun research and helps the community

* High citation counts illustrate the impact

ModSim observations COMPUTER

Finding the right primitives and flexibility is key to success

* HotSpot derived from first principles, model wide variety of designs
simple abstractions for modeling diverse architectures

Relies on external tools for power modeling, e.g. McPAT, and floorplan (ArchFP)
People can use other tools, e.g. CAD tools

* Allowed us to publish several papers on thermal management
But many more published by others

* Unfortunately, failed to build collaborative development community

Instead — semi-competing teams and tools

* Competition isn’t necessarily bad! In HotSpot’s case, incorporated some external models
into unified framework

Successful example: thermal @otsfol

ModSim observations, cont. COMPUTER

Disappointing example: feedback control theory for dynamic
adaptation

* We used it in our thermal and power management techniques

* But didn’t find a general abstraction to make it easy to use with diverse

architecture components
So not well explored in the architecture community

In-between example: automata processing (VASim, AutomataZoo,
etc.)

* Developed simulation framework and benchmarks, continuing low-level use

* | think we got the abstractions and infrastructure about right

* But area remains small

Modeling lifecycle Coe

* Early work —ad hoc models and benchmarks — crude and non-portable
* Researchers just want to evaluate their architectural idea
* Too early to think about building a community
* But high barrier to entry in this research topic

Somebody takes initiative to build general framework
Tipping point: area gains momentum - framework is adopted by others = helps area

gain further momentum
* Tools lower barrier to entry

Iterative development and support
* This is often insufficiently supported by funding, publication opportunities, community
* Tragedy of the commons, often simply a labor of love

Gradual atrophy
* Pls lose interest/move on, insufficient funding, popular research areas change, etc.

* Building a development community can help with this
* Help new users take ownership for continued support, relevance, and success

* Gemb5 has been a role model in this 5
* Funding and recognition remain challenges g

* External dependencies may atrophy too! cembd

Modeling lifecycle

Peak of research area

»

A

users,
papers

*

Ld

L]

tSp y
QR0 7
o

L]

L]

L]

L]

Plateau of
productivity

PIM

Early/crude/non-portable tools

Technology trigger

——————————7-_--}

Community support

AVISIBILITY

W W
COMPUTER
SCIENCE

Peak of Inflated Expectations
Plateau of Productivity

Slope of Enlightenment

Trough of Disillusionment

7

cem>b

Resurrection

(new supporters
or new use cases)

‘\‘Valley of death

»
>

Time

TIME

>

Technology Trigger
Gartner hype cycle (Wikipedia)

Why Processing in Memory (PIM)? CONFATE

Many important applications bottlenecked by memory
* Memory wall! (Term coined at UVA in mid-90s by Bill Wulf and Sally McKee)

Data-access bandwidth available inside DRAM >> I/O bandwidth

Spend lots of time and energy moving data - only to discard it
* Eg, filtering in database table scan

Energy efficiency is critical to success of computing field
* From embedded systems to Al data centers

Perhaps we can have our cake and eat it too — better performance
and lower energy

Why PIM now?

* |t was a hot topic many years ago and died out!
What’s new?

* Pain and opportunity

* Pain back then: mitigated by improvements in caching, prefetching, etc. —also GPUs

* Pain now: Slowdown in Moore’s Law, explosion in data, poor cache behavior, memory
bottlenecks much more widespread, data center energy concerns

* Lack of opportunity then: lack of killer app, no clear market

* Opportunity now: Broad interest in accelerators; no other accelerator directly targets
memory bottleneck

e Potential market - GEMV

* PIM is just another accelerator - tackles the memory bottleneck
* Happens to use DRAM as the implementation
* But special in the potential to leverage existing DRAM market

* What is the “killer app” that will create a market?

PIM vs. DRAM-based accelerator "SECE

* Memory first - PIM for commodity DRAM — “memory++”
* Compatible with existing/near-term memory standards

* But this limits design flexibility, e.g. regarding address interleaving, PIM logic
overhead

* Data layout and transformations may still require considerable data movement
* Data movement/transformation can kill benefits of PIM

* Allows incremental deployment

* Accelerator-first — DRAM as implementation technology for data-parallel
accelerator
* Can still be used as memory, but optimized for PIM

* Allows much greater design flexibility: trade off capacity, maybe R/W perf for PIM
* Can change interleaving, etc.

* Still want to try to avoid copying data back and forth btw. main memory and PIM
* Could be deployed in regular memory slots or CXL

Taxonomy of near-data/PIM in DRAM

* In memory controller on processor

chip

* Bank-level

Closer to data

* Subarray-level
* On the bitlines

11

* In interface logic of DIMM or
in logic layer of 3D stack

SubArray]

Ql Sense Amps |
P

SubArray

Sense-Amps |

@P[

PE

SubArray

Sénse:Amias]

@[

PE

-

Bank

Host

Memory

controllle;gﬂ

COMPUTER
SCIENCE

Chip

Notable early PIM —

PIM
Execution Unit

products—all bank level |t

TSVs & Pefiphery '

TERIET

* Samsung Aquabolt -
* SK Hynix AiM
* UPMEM

Aquabolt-XL silicon die photo

oo [s [S
[corpier R e DR Oevce e

Operating System Data

Acceleration
e
Engine

DRAM wWRAM IRAM -
Load program I 64MB

: - 3

Application Read/Write buffers 2 §

Orchestrator \qot(arguments) a :

g Poh}ccivc data r| — %

©

Host Processor 3
16 DPUs

| 16 DFPUS
I 16 DPUs

> N
- —-— kﬁmm PIM-DRAM die
”””’
“ MM Buffer die

A K .

3D-stacked PIM-HBM

(all images taken from vendor information on the Internet)

. SCIENCE

Why subarray level (“in-situ”)? COMPUTER

* Keeps compute very close to data — very low energy, minimizes
long global wires

* Can operate on entire row buffer (~4-8 Kbits) wide: 4K-8K bits
between each DRAM row access

* Logic ops can happen much faster than row read/write sanks *

cs.! . ;

?L

[Subarray n

= [——

* Potential for parallelism across \ [s.ubarra/ : 3

subarrays + banks | |- RowButier] | i
ic

* Beneficial even if only added to one subarray per bank

* Academic work has shown potential for both
* Analog - requires triple row activation and other

GDL

(Row Buffer

Row
Decoder

changes, but little/no circuitry at subarray row buffer
* Digital - uses traditional read/write, places some E Global rou buft
gates at interface to row buffer Global row buffer

13 » Can be 1) bit-serial, row-parallel or 2) scalar, bit-parallel narrow: 64-256 bits

DRAM-AP: General bit-serial Associative Processing
(ISWC’24)

DRAM SubArray
1T 1 1T
V-Layout Data Vector 1
[I I N Y O

o Vertical data layout (so far)

minimizes changes to data layout

.) o | O
o Bit-serial logic in subarrays % ST T T 1T 11T 111 Sense Amp
o With a few 1-bit registers = g Vl"—layT’Utl Dlatal VleCtlorlz
o Only need a few primitives to 3| s sa_in| | sa_out
obtain considerable speedup § &)
o Vector computing model S | <l <[]][]«] PRAM
g) Nnnunnnunununun clock
e Programmable micro-ops S U\\ '
0190100010000 D b Y q
O)O) OO OOy O) O) Oy O 3
8388 SIS G opcoce| | 2 | [[regr |
A A A B A 5
o Working on an approach that T o=
C A
£
=
O
O

D Q
Reg R2 _‘

Bit-serial Logic Unit

Fulcrum: Flexible, word-granularity, subarray-level PIM
[HPCA’20, in collaboration with UCSB and Micron]

Bit-serial: no support for data dependencies, conditional operations,

sparse access, etc.; high overhead for multiplication

Key insights: 1) leverage row-wide fetch but avoid high area cost and

functional limitations of row-wide logic; 2) leverage faster column
cycle time vs. row cycle time

Fulcrum solutions:
* Word-granularity ALU

e Shift-based access
Row buffer>walker

* Simple controller

Issuing shifts based
on a predicate

Programmable,
semi-general-purpose

N
Subarray 1
<=

GDL

[T 1- -walkert - [Jeo o ==
[Je={ Je={]- -walker2- - [Je={ fe={ =
oo - -Walkers - [JeJe={Jo=—

Subarray 2 I‘

AddressLess Procesing Unit (ALPU)

D:>D:>|:|- -Walkert -
[Je=] =]- -walker2- -

I Row address, select,
and shift signals

.

Row decoder
Control unit

Shift

—

] Data [1 Selector 1
m
5T AN
g5
5 .9
g 2%
- O
<}:.‘<§ o3
o 5 g
o 2o
%
£ -
o a
S
o
O
<

Low-hanging fruit: database table scans for OLAP w w»

(joint w/ Jignesh Patel, CMU and José Martinez, Cornell, and our students: cg(':vllEPHcT:ER

Akhil Shekar, Lingxi Wu, Kevin Gaffney, Martin Prammer, and Helena Caminal) \ 4

* Online analytics processing (OLAP) - huge market for potential accelerator
* eg, Google found that BigQuery, consumed about 10% total cycles within the fleet

* Memory bound: typical query scans all records yet selects only a small subset
* CPU fetches all records into CPU, mostly performs only simple/range comparisons
* Then throws away most of them, wasting lots of time and energy

3 . Transaction Table
[Fmd the top 10 product categories most\ date) 5

popular with customers in their 20s d_key ciistomer
SELECT d_year \ order c_key

- — Dimension

SUM (o _quantity) AS popularity d_day o_p_key c age
FROM order, product, customer o_c_key / c_gender
WHERE o _p key = p_key product o_s_key —

AND o c key = c key — = :

AND c_age [BETWEEN 20 AND 29 p_key O_d'SCO‘_J”t\ S LGl
GROUP BY p categor p_category | | o_quantity | Ys_key
ORDER BY popularity DESC p_color S_region
\LIMIT 10; ’ S_size

16 Table Scan: Apply selection predicates on the dimension table for the “WHERE” clause

. .. I
Key insight: convert joins to table scan £

* Denormalization: joins are expensive, so prejoin everything, create one WideTable
s D1 mwm D2 ®mmm D3 ### \W\ithoutPIM mmm \With PIM
20 I I
10 -1

* Used in some industry products

* Denormalization yields almost 2X speedup in DuckDB
* PIM yields almost 4X further speedup

/ , % L/

¢ | -] 7l 1,717 1 g

alﬁl mm,l T LT L T L L

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3 GM

2e-2 6e-4 T7e-5 8e-3 2e-3 2e-4 3e-2 1e-3 6e-5 8e-7 2e-2 5e-3 9e-5

17 Query

O~ DNW PO
ASSSSSS
SSSS——.

AN\
(SSSSSS
NRRRRRRN
NSNS
RSSSS
NN
SSSSS
NN

18

Data analytics: Bank-level PIM sufficient! ez

* Even with b.ank-lev.el PIM, . Channel I
bottleneck is fetching S Rank
selected records ks Bank
_ ‘= Subarray (SALP-2) = PIM
* More aggressive PIM <‘E£ Subarray (SALP-4) CPU
doesn’t help Subarray (SALP-8)
* Bank-level unit can be tiny 0.00 0.05 0.10 015

: . GM query time (seconds
* Just equality and range checki query ()

Evaluating PIM design space (IISWC’24) o

* PIMeval simulator
 Just released

* Abstract model of PIM Aaouos
processing unit

* Can be integrated

Device Creation PIM Processing Unit

PIM Processing Unit

221nag NId

Data Copying \l_l/

PIM Processing Unit

odelalu] ++9/D AJEJQH Joje|nwis Nlid

a I:]yWhere In DRAM PIM Computation PIM Resource Mgr
hierarchy Perf
Model
* Can Specify PIM-PU Data Copying PIM Commands
funCtlonal Capabllltles PIM C/C++ App PIM Simulator C/C++ Library

* Also models data allocation,
copying, etc.

* Performs both functional and performance modeling
* Performance model derived from DRAMsim3

19

20

PIMbench benchmark suite
(continuing to add new benchmarks)

Memory Access Pattern

Domain Application Name Sequential | Random Execution Type
Vector Addition v PIM

Linear Algebra AXPY v PIM
Matrix-Vector Mult. (GEMV) v PIM
Matrix-Matrix Mult. (GEMM) v PIM

Sort Radix Sort v v PIM + Host
AES-Encryption v v PIM

Cryptography AES-Decryygtion 7 7 PIM

Graph Triangle Count v v PIM

Database Filter-By-Key v PIM + Host
Histogram v PIM

Image Processing Brightness v PIM
Image Down Sampling v PIM

Supervised Learning K-nearest neighbors (KNN) v v PIM + Host
Linear Regression v PIM

Unsupervised Learning | K-means v v PIM
VGG-13 v PIM + Host

Neural Network VGG-16 v PIM + Host
VGG-19 v PIM + Host

COMPUTER
SCIENCE

21

PIM AP et

* Designed an API for writing PIM programs that is portable across PIM
architectures

void axpy(uint64_t vectorLength, const vector<int> &X, const vector<int> &Y, int A)
{
unsigned bitsPerElement = sizeof(int) * 8;
// Allocate device memory
PimObjId objX = pimAlloc(PIM_ALLOC_AUTO, vectorLength, bitsPerElement, PIM_INT32)

PimObjId objY = pimAllocAssociated(bitsPerElement, objX, PIM_INT32);
assert((objX != -1) && (objYy != -1));

// Copy inputs, perform operations, copy back results
pimCopyHostToDevice(X.data(), objX);

pimCopyHostToDevice(Y.data(), objY);

pimScaledAdd(objX, objY, objY, A)

pimCopyDeviceToHost (objY, Y.data());

// Free allocated memory

pimFree(objX) ;

pimFree(objY) ;

W W
COMPUTER

PIM architecture comparison —vs CPU

SCIENCE
\ 4

* Fulcrum is scalar, bank-level is 128-bit SIMD

* Assumes data must be copied into PIM memory—significant overhead

* Bit-serial fastest on Boolean, addition
* Fulcrum fastest on everything else

* Bank-level limited by narrow bank interface

B Kernel + Data Movement W Kernel

100000

10000

1000

100
10
1

dnpaads

0.1

0.01

0.001

ueawo
6L-99AN

9L-99A

€L-99AN

sueaw-)|
uoissaigay Jeaulq
NN
gundwesumoq asew|
ssauysiug
wieligolsiH
Koy-Ag-1antd
uno) aj8ueln)
uondAioag-sav
uondAiou3z-s3vy
Hos xipey

WW3I9

AW3IO

AdXV

uonippy 1019sA
ueawso

6L-99AN

9L-99AN

E€L-99AN

sueaw-)|
uoissaigay Jeaulq
NN
gundwesumoq ageuw|
ssaulysug
wei8ol1siH
Koy-Ag-1antd
uno) asuen]
uondAioag-sav
uondAiou3z-s3vy
uos xipey

WIW3I9

NAEDR)

AdXV

uonippy 1019sA
ueawo

6L-99AN

9L-99AN

E€L-99AN

sueaw-y|
uoissaigay Jeaulq
NN
Sundwesumoq agew|
ssaulysug
weligolsiH
Koy-Ag-1antd
1unoo ajsuelll
uondAioag-sav
uondAiou3z-s3vy
uos xipey

WIW3I9

NAEDR)

AdXV

uonippy 10199\

Bank-level

Fulcrum

Bit-Serial

23

PIM architecture comparison-GPU £

* DDR-based PIM has difficulty competing with A100 GPU
* Takes many ranks to match bandwidth of GPU with 4 stacks of HBM
* Note GEMV result here is flawed — data too small

M Bit-serial ® Fulcrum m Bank-level

10000
1000
100
10

S
3 1
o
o 01
(2]
0.01
0.001
0.0001
0.00001 [
szzZss.s‘g;?%@;”%sgaaﬂg
-‘ééﬁwﬁ‘a‘aO;%gE!gwoowE
S o =2 > > O &g 9o = E o E © © 9O 4
< T ¢ ¢ & L 3 @ « w e - = =
§ Q:Lﬁg?:gﬂ:mc &"
I‘_'_ S
S 4 @ = - 5 5
S < < o c
& = 32 ranks
©
E

24

But PIM has significant energy efficiency . »

SCIENCE

benefits v

* Energy efficiency win for most benchmarks vs. CPU
* Also beats GPU on subset of benchmarks

M Bit-serial m Fulcrum m Bank-level W Bit-serial ™ Fulcrum m Bank-level

1000 10000
1000
100 100
= <
S S 10
1] 7]
:10 =]
= S 1
& &
> > 0.1
@ 1 &
2 2 001
w w
0.1 0.001
I 0.0001 IIlI
0.01 0.00001
S &£ 85585 85§z 88T T 9§ S E=£%5 58585 8§ g £z 8 ¢e 7 %%
E w5 »® ¥ ¥ © T & = B v 3 O & o = w o ® 5 ¥ 9 % £ o 2 2 © O O
T < 0o 0o x % & o0 5 @ = 2 ¥ 2 2 8 8 8 3 T T 0o o x & 2 0 g ¥ 2 £ o E © © 9
< T ¢ ¢ & L B ¥ g W x = = = < T ¢ g & £ 2 P g ®w = - - =
o X k]
g = 5§ 8 £ 2 T & ¢ & g = & g £ £ T & ¢ &
o wn » 8 i o © e w » & L o &
(] 17}
> < < - a 2 > = < - 2 2
o0] =1} =
1] ©
E E

Gmean

Observations and Open issues CouTE

Software ecosystem and portability are key to success
* Good programming model and libraries were key to GPU successes

Not yet clear which of these PIM architectures is most promising
* Want a design that combines benefits of each

Exploring how to integrate with gem5 for full-system simulation

System integration is hard

How to communicate with CPU? (Eg, how does a PIM program run?)
Memory allocation (PIM requires specific data layout, esp. for subarray-level)
Memory consistency (SC, TSO, etc. — what is contract with PIM programmer?)
Cache coherence

Multi-tenancy

Etc.

Debugging support is also needed for practical adoption

Concluding thoughts CouITE

A “tools-first” research agenda is rewarding
* Enables fun research and the tools have external impact

To have external impact, tools need to be highly flexible and easy to
use

* Other researchers will use them in ways you never expected

PIM shows promise to accelerate key compute tasks while saving
energy

e Data analytics and GEMV as potential early killer apps

UVA team effort!

AISYS

!) \(Ei
Hugo Abbot Kyle Durrer Ethan Ermovick Kumaresh Deyuan Guo
Nandagopal

<~

Mohammadhosein Zhenxing Xi
Gholamrezaei

Mircea Stan Lingxi Wu Ashish Venkat

