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• Academia – tendency to look where the light - and tools - are 
good
• Good tools enable expansion for a new research area
• Key enabler for research we want to do ourselves
• Helps make it easier to compare research results

• Developing these tools (simulators, benchmarks, etc.) is 
rewarding
• Fun research and helps the community
• High citation counts illustrate the impact

Why we work on ModSim
(from an academic perspective)
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• Finding the right primitives and flexibility is key to success
• Successful example: thermal
• HotSpot derived from first principles, model wide variety of designs,

simple abstractions for modeling diverse architectures
• Relies on external tools for power modeling, e.g. McPAT, and floorplan (ArchFP)
• People can use other tools, e.g. CAD tools

• Allowed us to publish several papers on thermal management
• But many more published by others

• Unfortunately, failed to build collaborative development community
• Instead – semi-competing teams and tools 

• Competition isn’t necessarily bad! In HotSpot’s case, incorporated some external models 
into unified framework

ModSim observations
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• Disappointing example: feedback control theory for dynamic 
adaptation
• We used it in our thermal and power management techniques
• But didn’t find a general abstraction to make it easy to use with diverse 

architecture components
• So not well explored in the architecture community

• In-between example: automata processing (VASim, AutomataZoo, 
etc.)
• Developed simulation framework and benchmarks, continuing low-level use
• I think we got the abstractions and infrastructure about right
• But area remains small

ModSim observations, cont.
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• Early work – ad hoc models and benchmarks – crude and non-portable
• Researchers just want to evaluate their architectural idea
• Too early to think about building a community
• But high barrier to entry in this research topic

• Somebody takes initiative to build general framework
• Tipping point: area gains momentum à framework is adopted by others à helps area 

gain further momentum
• Tools lower barrier to entry

• Iterative development and support
• This is often insufficiently supported by funding, publication opportunities, community
• Tragedy of the commons, often simply a labor of love

• Gradual atrophy 
• PIs lose interest/move on, insufficient funding, popular research areas change, etc.
• Building a development community can help with this

• Help new users take ownership for continued support, relevance, and success
• Gem5 has been a role model in this
• Funding and recognition remain challenges

• External dependencies may atrophy too!

Modeling lifecycle
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Modeling lifecycle
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Gartner hype cycle (Wikipedia)
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• Many important applications bottlenecked by memory
• Memory wall!   (Term coined at UVA in mid-90s by Bill Wulf and Sally McKee)

• Data-access bandwidth available inside DRAM >> I/O bandwidth
• Spend lots of time and energy moving data - only to discard it
• Eg, filtering in database table scan

• Energy efficiency is critical to success of computing field
• From embedded systems to AI data centers

• Perhaps we can have our cake and eat it too – better performance 
and lower energy

Why Processing in Memory (PIM)?
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• It was a hot topic many years ago and died out! 
What’s new?
• Pain and opportunity

• Pain back then: mitigated by improvements in caching, prefetching, etc. – also GPUs
• Pain now: Slowdown in Moore’s Law, explosion in data, poor cache behavior, memory 

bottlenecks much more widespread, data center energy concerns
• Lack of opportunity then: lack of killer app, no clear market
• Opportunity now: Broad interest in accelerators; no other accelerator directly targets 

memory bottleneck
• Potential market - GEMV

• PIM is just another accelerator - tackles the memory bottleneck
• Happens to use DRAM as the implementation
• But special in the potential to leverage existing DRAM market

• What is the “killer app” that will create a market? 

Why PIM now?
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• Memory first - PIM for commodity DRAM – “memory++”
• Compatible with existing/near-term memory standards
• But this limits design flexibility, e.g. regarding address interleaving, PIM logic 

overhead
• Data layout and transformations may still require considerable data movement

• Data movement/transformation can kill benefits of PIM
• Allows incremental deployment

• Accelerator-first – DRAM as implementation technology for data-parallel 
accelerator
• Can still be used as memory, but optimized for PIM 

• Allows much greater design flexibility: trade off capacity, maybe R/W perf for PIM
• Can change interleaving, etc.

• Still want to try to avoid copying data back and forth btw. main memory and PIM
• Could be deployed in regular memory slots or CXL

PIM vs. DRAM-based accelerator
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• In memory controller on processor 
chip
• In interface logic of DIMM or 

in logic layer of 3D stack
• Bank-level
• Subarray-level
• On the bitlines

Taxonomy of near-data/PIM in DRAM
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• Samsung Aquabolt
• SK Hynix AiM 
• UPMEM

Notable early PIM 
products–all bank level
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• Keeps compute very close to data – very low energy, minimizes
long global wires
• Can operate on entire row buffer (~4-8 Kbits) 

between each DRAM row access
• Logic ops can happen much faster than row read/write

• Potential for parallelism across 
subarrays + banks
• Beneficial even if only added to one subarray per bank
• Academic work has shown potential for both
• Analog - requires triple row activation and other 

changes, but little/no circuitry at subarray row buffer
• Digital - uses traditional read/write, places some 

gates at interface to row buffer
• Can be 1) bit-serial, row-parallel or 2) scalar, bit-parallel

Why subarray level (“in-situ”)?

narrow: 64-256 bits

Bank row bufferGlobal row buffer

Banks
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DRAM-AP: General bit-serial Associative Processing
(IISWC’24) 

● Vertical data layout (so far)
● Bit-serial logic in subarrays

○ With a few 1-bit registers
○ Only need a few primitives to 

obtain considerable speedup
● Vector computing model
● Programmable micro-ops

● Working on an approach that 
minimizes changes to data layout
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• Bit-serial: no support for data dependencies, conditional operations, 
sparse access, etc.; high overhead for multiplication
• Key insights: 1) leverage row-wide fetch but avoid high area cost and 

functional limitations of row-wide logic; 2) leverage faster column 
cycle time vs. row cycle time
• Fulcrum solutions:
• Word-granularity ALU
• Shift-based access

• Row bufferàwalker 
• Simple controller

• Issuing shifts based 
on a predicate

• Programmable, 
semi-general-purpose

Fulcrum:  Flexible, word-granularity, subarray-level PIM 
[HPCA’20, in collaboration with UCSB and Micron]
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• Online analytics processing (OLAP) - huge market for potential accelerator
• eg, Google found that BigQuery, consumed about 10% total cycles within the fleet

• Memory bound: typical query scans all records yet selects only a small subset
• CPU fetches all records into CPU, mostly performs only simple/range comparisons
• Then throws away most of them, wasting lots of time and energy

Low-hanging fruit: database table scans for OLAP
(joint w/ Jignesh Patel, CMU and José Martínez, Cornell, and our students:
Akhil Shekar, Lingxi Wu, Kevin Gaffney, Martin Prammer, and Helena Caminal)

16 Table Scan: Apply selection predicates on the dimension table for the “WHERE” clause

Transaction Table

Dimension 
Tables



• Denormalization: joins are expensive, so prejoin everything, create one WideTable
• Used in some industry products

• Denormalization yields almost 2X speedup in DuckDB
• PIM yields almost 4X further speedup

Key insight: convert joins to table scan
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• Even with bank-level PIM,
bottleneck is fetching
selected records
• More aggressive PIM

doesn’t help
• Bank-level unit can be tiny
• Just equality and range checking

Data analytics: Bank-level PIM sufficient!
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• PIMeval simulator
• Just released
• Abstract model of PIM

processing unit
• Can be integrated

anywhere in DRAM 
hierarchy
• Can specify PIM-PU 

functional capabilities
• Also models data allocation, 

copying, etc.
• Performs both functional and performance modeling

• Performance model derived from DRAMsim3

Evaluating PIM design space (IISWC’24)
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PIMbench benchmark suite
(continuing to add new benchmarks)
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• Designed an API for writing PIM programs that is portable across PIM 
architectures

PIM API
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• Fulcrum is scalar, bank-level is 128-bit SIMD
• Assumes data must be copied into PIM memory—significant overhead
• Bit-serial fastest on Boolean, addition
• Fulcrum fastest on everything else
• Bank-level limited by narrow bank interface

PIM architecture comparison – vs CPU

22

0.001

0.01

0.1

1

10

100

1000

10000

100000

V
ec

to
r A

dd
it

io
n

A
X

P
Y

G
EM

V

G
EM

M

R
ad

ix
 S

or
t

A
ES

-E
nc

ry
pt

io
n

A
ES

-D
ec

ry
pt

io
n

Tr
ia

ng
le

 C
ou

nt

Fi
lt

er
-B

y-
K

ey

H
is

to
gr

am

B
ri

gh
tn

es
s

Im
ag

e 
D

ow
ns

am
p

lin
g

K
N

N

Li
ne

ar
 R

eg
re

ss
io

n

K
-m

ea
ns

V
G

G
-1

3

V
G

G
-1

6

V
G

G
-1

9

G
m

ea
n

V
ec

to
r A

dd
it

io
n

A
X

P
Y

G
EM

V

G
EM

M

R
ad

ix
 S

or
t

A
ES

-E
nc

ry
pt

io
n

A
ES

-D
ec

ry
pt

io
n

Tr
ia

ng
le

 C
ou

nt

Fi
lt

er
-B

y-
K

ey

H
is

to
gr

am

B
ri

gh
tn

es
s

Im
ag

e 
D

ow
ns

am
p

lin
g

K
N

N

Li
ne

ar
 R

eg
re

ss
io

n

K
-m

ea
ns

V
G

G
-1

3

V
G

G
-1

6

V
G

G
-1

9

G
m

ea
n

V
ec

to
r A

dd
it

io
n

A
X

P
Y

G
EM

V

G
EM

M

R
ad

ix
 S

or
t

A
ES

-E
nc

ry
pt

io
n

A
ES

-D
ec

ry
pt

io
n

Tr
ia

ng
le

 C
ou

nt

Fi
lt

er
-B

y-
K

ey

H
is

to
gr

am

B
ri

gh
tn

es
s

Im
ag

e 
D

ow
ns

am
p

lin
g

K
N

N

Li
ne

ar
 R

eg
re

ss
io

n

K
-m

ea
ns

V
G

G
-1

3

V
G

G
-1

6

V
G

G
-1

9

G
m

ea
n

Bit-Serial Fulcrum Bank-level

S
p

ee
d

up

Kernel + Data Movement Kernel



• DDR-based PIM has difficulty competing with A100 GPU
• Takes many ranks to match bandwidth of GPU with 4 stacks of HBM
• Note GEMV result here is flawed – data too small

PIM architecture comparison-GPU
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• Energy efficiency win for most benchmarks vs. CPU
• Also beats GPU on subset of benchmarks

But PIM has significant energy efficiency 
benefits
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• Software ecosystem and portability are key to success
• Good programming model and libraries were key to GPU successes

• Not yet clear which of these PIM architectures is most promising
• Want a design that combines benefits of each

• Exploring how to integrate with gem5 for full-system simulation
• System integration is hard

• How to communicate with CPU?  (Eg, how does a PIM program run?) 
• Memory allocation (PIM requires specific data layout, esp. for subarray-level)
• Memory consistency (SC, TSO, etc. – what is contract with PIM programmer?)
• Cache coherence
• Multi-tenancy
• Etc.

• Debugging support is also needed for practical adoption

Observations and Open issues
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• A “tools-first” research agenda is rewarding
• Enables fun research and the tools have external impact

• To have external impact, tools need to be highly flexible and easy to 
use
• Other researchers will use them in ways you never expected

• PIM shows promise to accelerate key compute tasks while saving 
energy
• Data analytics and GEMV as potential early killer apps

Concluding thoughts
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