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The Age of Heterogeneous Computing

©Luca Carloni

• The migration towards heterogeneous SoC 
architectures will accelerate, across almost all computing domains 
o IoT devices, mobile devices, embedded systems, automotive electronics, 

avionics, data centers and even supercomputers

• The set of heterogeneous SoCs in production in any given year will 
be itself heterogeneous!
o no single SoC architecture will dominate all the markets!

• State-of-the-art SoC architectures integrate 
increasingly diverse sets of components
o different CPUs, GPUs, hardware accelerators, 

memory hierarchies, I/O peripherals, sensors, 
reconfigurable engines, analog blocks… 
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Heterogeneity Increases Design Complexity

©Luca Carloni

• Heterogeneous architectures produce higher energy-efficient 
performance, but make more difficult the tasks of design, 
verification and programming
• at design time, diminished regularity in the system structure, chip layout 

• at runtime, more complex hardware/software and management of shared resources

• With each SoC generation, the addition of new capabilities is 
increasingly limited by engineering effort and team sizes 

• [Khailany2018]

• The biggest challenges are (and will increasingly be) found in the 
complexity of system integration
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[L. P. Carloni. The Case for Embedded Scalable Platforms, Invited Paper at DAC 2016 ]



Open-Source Hardware (OSH) 

©Luca Carloni

• An opportunity to reenergize 
the innovation in the 
semiconductor and electronic 
design automation industries

• The OSH community is gaining  
momentum
o many diverse contributions from both 

academia and industry

o multi-institution organizations

o government programs

Image Sources: 
https://riscv.org/
https://github.com/nvdla
https://github.com/lnis-uofu/OpenFPGA
https://pulp-platform.org/
https://vortex.cc.gatech.edu/
https://parallel.princeton.edu/openpiton/
https://fastmachinelearning.org/hls4ml/
https://chipyard.readthedocs.io/en/stable/
https://chipsalliance.org/
https://www.openhwgroup.org/ 4
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The Open Challenge of Open-Source Hardware

©Luca Carloni

• To date, most OSH projects are focused on the development 
of individual SoC components, such as a processor core, a 
GPU, or an accelerator

• This leaves open a critical challenge:
How  can  we  realize  a  complete  SoC  for  a  given  target  
application  domain  by  efficiently  reusing  and  combining 
a  variety  of  independently  developed,  heterogeneous,  
OSH components,  especially  if  these  components  are  
designed  by separate organizations for separate purposes?
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The Concept of Platform
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• Innovation in SoC architectures and their design methodologies 
is needed to promote design reuse and collaboration
• Architectures and methodologies must be developed together

• Platform = architecture + methodology
• An SoC architecture enables design reuse when it simplifies the integration of 

many components that are independently developed

• An SoC methodology enables design collaboration when it allows designers to 
choose the preferred specification languages and design flows for the various 
components

• An effective combination of architecture and methodology is a platform 
that maximizes the potential of open-source hardware 
• by scaling up the number and type of components that can be integrated in an SoC 

and by enhancing the productivity of the designers who develop and use them
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ESP : An Open-Source Platform for SoC Design

©Luca Carloni 7

esp.cs.columbia.edu



ESP is Silicon Proven:  The EPOCHS-1 SOC
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The EPOCHS-1 SoC:  Sources of OSH IPs
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• 4 RISC-V CVA6 cores from ETH 
Zurich/OpenHW Group

• 4 NVIDIA Deep Learning Accelerators

• 4 Accelerators designed at Harvard

• 1 Accelerator and Power Management 
designed at IBM Research

• 3 Accelerators, Memory Hierarchy, and 
Network-on-Chip designed at Columbia
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Outline
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• RISC-V Processors

• Many-Accelerator

• Distributed Memory

• Multi-Plane NoC

           
           

    

      
    

         
    

   
    

   
           

    

      
    

 
 
  
  
 
  
 
 
  
 
 

The ESP architecture implements a 
distributed system, which is scalable, 

modular and heterogeneous,
giving processors and accelerators 

similar weight in the SoC
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ESP Architecture
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• Processor off-the-shelf 
o RISC-V CVA6-Ariane (64 bit)

SPARC V8 Leon3 (32 bit)
o RISC-V IBEX (32 bit)
o L1 private cache

• L2 private cache
o Configurable size
o MESI protocol

• IO/IRQ channel
o Un-cached
o Accelerator config. registers, 

interrupts, flush, UART, …
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ESP Architecture: Processor Tile
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• External Memory Channel

• LLC and directory partition
o Configurable size

o Extended MESI protocol 

o Supports coherent-DMA 

for accelerators

• DMA channels

• IO/IRQ channel
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ESP Architecture: Memory Tile
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• Accelerator Socket 

w/ Platform Services

o Direct-memory-access

o Run-time selection of 

coherence model:

▪ Fully coherent

▪ LLC coherent

▪ Non coherent

o User-defined registers

o Distributed interrupt
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ESP Architecture: Accelerator Tile
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ESP Accelerator Socket
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• ESP accelerator API

o Generation of device driver 

and unit-test application

o Seamless shared memory

/*

 * Example of existing C application with ESP 

 * accelerators that replace software kernels 2, 3, 

 * and 5. The cfg_k# contains buffer and the

 * accelerator configuration. 

 */

{

  int *buffer = esp_alloc(size);

  for (...) {

    kernel_1(buffer,...); /* existing software  */

    esp_run(cfg_k2);      /* run accelerator(s) */

    esp_run(cfg_k3);

    kernel_4(buffer,...); /* existing software  */

    esp_run(cfg_k5);

  }

  validate(buffer);       /* existing checks    */

  esp_free();          /* memory free        */

}
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ESP Software Socket
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Miscellaneous Tile Memory Tile

Accelerator tile Processor Tile
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ESP Platform Services
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Developers focus on the high-level specification, decoupled from

memory access, system communication, hardware/software interface
A
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ESP Accelerator Flow



©Luca Carloni
24

SoC Integration

…
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ESP Interactive Flow for SoC Integration
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The EPOCHS-1 SoC:  Chip Highlights
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▪ 64 mm2 SoC designed in 12 nm FinFET
▪ 35 clock domains; 23 power domains
▪ 8.4 MB on-chip SRAM memory
▪ Tile-based SoC architecture 
▪ 34 tiles connected by a 6-plane 2-D 

mesh NoC
▪ 23 accelerators of 14 different types
▪ 10 accelerators compose a cluster 

demonstrating a novel distributed 
hardware power management 
scheme

▪ The 74 Tbps NoC provides flexible 
orchestration of data

▪ Designed by a small team of PhD 
students, postdocs, and industry 
researchers in 
3 months with agile design 
methodology

[M. Cassel et al., A 12nm Linux-SMP-Capable RISC-V SoC with 14 Accelerator 
Types, Distributed Hardware Power Management and Flexible NoC-Based 
Data Orchestration, ISSCC 2024 ]



The EPOCHS-1 SoC:  Chip Highlights
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▪ 64 mm2 SoC designed in 12 nm FinFET
▪ 35 clock domains; 23 power domains
▪ 8.4 MB on-chip SRAM memory
▪ Tile-based SoC architecture 
▪ 34 tiles connected by a 6-plane 2-D 

mesh NoC
▪ The 74 Tbps NoC provides flexible 

orchestration of data
▪ 23 accelerators of 14 different types
▪ 10 accelerators compose a cluster 

demonstrating a novel distributed 
hardware power management 
scheme

▪ Designed by a small team of PhD 
students, postdocs, and industry 
researchers in 3 months with ESP, our 
open-source platform for agile SoC 
design SoC
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[M. Cassel et al., A 12nm Linux-SMP-Capable RISC-V SoC with 14 Accelerator 
Types, Distributed Hardware Power Management and Flexible NoC-Based 
Data Orchestration, ISSCC 2024 ]



EPOCHS-1 Chip: Summary

◼ Managing resources in a large, heterogeneous SoC that runs multiple 
simultaneous applications is a difficult system-level challenge
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EPOCHS-1 SoC: NoC-Based Data Orchestration

• NoC traffic with 11 
accelerators executing in 
parallel
• “Contention” = # of cycles 

when a queue is full and 
asserts backpressure

• 7 different configurations 
of the memory hierarchy

• Scaling up the memory 
hierarchy alleviates 
contention and distributes 
traffic on average
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The EPOCHS-0 Chip
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Technology
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[ T. Jia, et al. "A 12nm Agile-Designed SoC for Swarm-Based 
Perception with Heterogeneous IP Blocks, a Reconfigurable 
Memory Hierarchy, and an 800MHz Multi-Plane NoC, 
ESSCIRC 2022]



A Scalable Approach to Chip Design
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• 4x4 tiles

• 21.62 mm2

• 17 clock domains

• 16 power domains

• Tile: 12 hours in 16-core 64GB RAM machine

• Top: 51 hours in 64-core 376 GB RAM machine

7 new accelerators tiles
2.25x more tiles
2.18x more clock domains
2.25x more power domains
2.96x more area
Same tile imp. running time
+29% top imp. running time

• 6x6 tiles

• 64 mm2

• 37 clock domains

• 23 power domains

• Tile: 12 hours in 16-core 64GB RAM machine

• Top: 66 hours in 64-core 376 GB RAM machine

EPOCHS-0 EPOCHS-1
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A Scalable Approach to Chip Design
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In Summary:  ESP for Open-Source Hardware
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• We contribute ESP to the OSH 
community in order to support the 
realization of
• more scalable architectures for SoCs 

that integrate 

• more heterogeneous components, 
thanks to a 

• more flexible design methodology, 
which accommodates different 
specification languages and design flows

• ESP was conceived as a heterogeneous 
integration platform from the start and 
tested through years of teaching at 
Columbia University

• We invite you to use ESP for your 
projects and to contribute to ESP!

esp.cs.columbia.edu



The Third OSCAR Workshop

https://oscar-workshop.github.io/
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Some Relevant Publications 
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1. M. Cassel dos Santos et al. A 12nm Linux-SMP-Capable RISC-V SoC with 14 Accelerator Types, 
Distributed Hardware Power Management and Flexible NoC-Based Data Orchestration. ISSCC 2024.

2. M. Cassel dos Santos et al. A Scalable Methodology for Agile Chip Development with Open-Source 
Hardware Components. ICCAD 2022 (Invited Paper). 

3. T. Jia et al. A 12nm Agile-Designed SoC for Swarm-Based Perception with Heterogeneous IP Blocks, a 
Reconfigurable Memory Hierarchy and an 800MHz Multi-Plane NoC. ESSCIRC 2022. 
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5. D. Giri et al. Accelerator Integration for Open-Source SoC Design. IEEE MICRO, 2021
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7. L. P. Carloni et al. Teaching Heterogeneous Computing with System-Level Design Methods, WCAE 2019.
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9.   L. P. Carloni. The Case for Embedded Scalable Platforms DAC 2016. (Invited Paper). 
10. C. Pilato et al. System-Level Optimization of Accelerator Local Memory for Heterogeneous Systems-on-
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11. P. Mantovani et al. An FPGA-Based Infrastructure for Fine-Grained DVFS Analysis in High-Performance 
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System Level Design Group

Thank you from the ESP team!

esp.cs.columbia.edu

github.com/sld-columbia/esp

https://esp.cs.columbia.edu/
https://github.com/sld-columbia/esp
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