

Collaborative System-on-Chip Design with the Open-Source ESP Platform

Luca P. Carloni

ModSim 2024 Seattle, WA August 2024

The Age of Heterogeneous Computing

- State-of-the-art SoC architectures integrate increasingly diverse sets of components
 - o different CPUs, GPUs, hardware accelerators, memory hierarchies, I/O peripherals, sensors, reconfigurable engines, analog blocks...
- The migration towards heterogeneous SoC architectures will accelerate, across almost all computing domains

I/O

Matrix Op.

accelerator

Radio

Core

Graph

accelerator

Signal Proc.

Core

Comp.

Vision

accelerator

I/O

- IoT devices, mobile devices, embedded systems, automotive electronics, avionics, data centers and even supercomputers
- The set of heterogeneous SoCs in production in any given year will be itself heterogeneous!

o no single SoC architecture will dominate all the markets!

Heterogeneity Increases Design Complexity

- Heterogeneous architectures produce higher energy-efficient performance, but make more difficult the tasks of design, verification and programming
 - at design time, diminished regularity in the system structure, chip layout
 - at runtime, more complex hardware/software and management of shared resources
- With each SoC generation, the addition of new capabilities is increasingly limited by engineering effort and team sizes
 - [Khailany2018]
- The biggest challenges are (and will increasingly be) found in the complexity of system integration

[L. P. Carloni. The Case for Embedded Scalable Platforms, Invited Paper at DAC 2016]

Open-Source Hardware (OSH)

- An opportunity to reenergize the innovation in the semiconductor and electronic design automation industries
- The OSH community is gaining momentum
 - many diverse contributions from both academia and industry
 - $_{\circ}$ multi-institution organizations
 - government programs

Image Sources: https://riscv.org/ https://github.com/nvdla https://github.com/lnis-uofu/OpenFPGA https://pulp-platform.org/ https://vortex.cc.gatech.edu/ https://parallel.princeton.edu/openpiton/ https://fastmachinelearning.org/hls4ml/ https://chipyard.readthedocs.io/en/stable/ https://chipsalliance.org/ https://chipsalliance.org/

The Open Challenge of Open-Source Hardware

- To date, most OSH projects are focused on the development of individual SoC components, such as a processor core, a GPU, or an accelerator
- This leaves open a critical challenge:

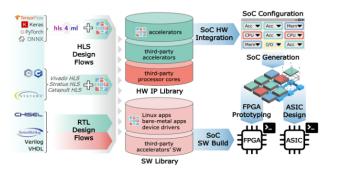
How can we realize a complete SoC for a given target application domain by efficiently reusing and combining a variety of independently developed, heterogeneous, OSH components, especially if these components are designed by separate organizations for separate purposes?

The Concept of Platform

- Innovation in SoC architectures and their design methodologies is needed to promote design reuse and collaboration
 - Architectures and methodologies must be developed together
- Platform = architecture + methodology
 - An SoC architecture enables design reuse when it simplifies the integration of many components that are independently developed
 - An SoC methodology enables design collaboration when it allows designers to choose the preferred specification languages and design flows for the various components
- An effective combination of architecture and methodology is a platform that maximizes the potential of open-source hardware
 - by scaling up the number and type of components that can be integrated in an SoC and by enhancing the productivity of the designers who develop and use them

ESP : An Open-Source Platform for SoC Design

Home Release Resources V News Press Team Contact


ESP

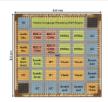
the open-source SoC platform

0 9 🖬 🖵

The ESP Vision

ESP is an open-source research platform for heterogeneous system-on-chip design that combines a scalable tile-based architecture and a flexible system-level design methodology.

ESP provides three accelerator flows: RTL, high-level synthesis (HLS), machine learning frameworks. All three design flows converge to the ESP automated SoC integration flow that generates the necessary hardware and software interfaces to rapidly enable full-system prototyping on FPGA.


Overview

discussion to search

d b

esp.cs.columbia.edu

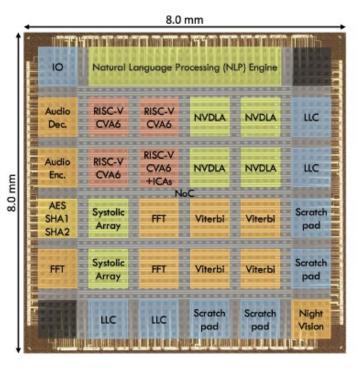
Latest Posts

ESP at ISSCC!

Check out our second chip based on ESP, the opensource SoC platform.

Read more

Published: Mar 16, 2024



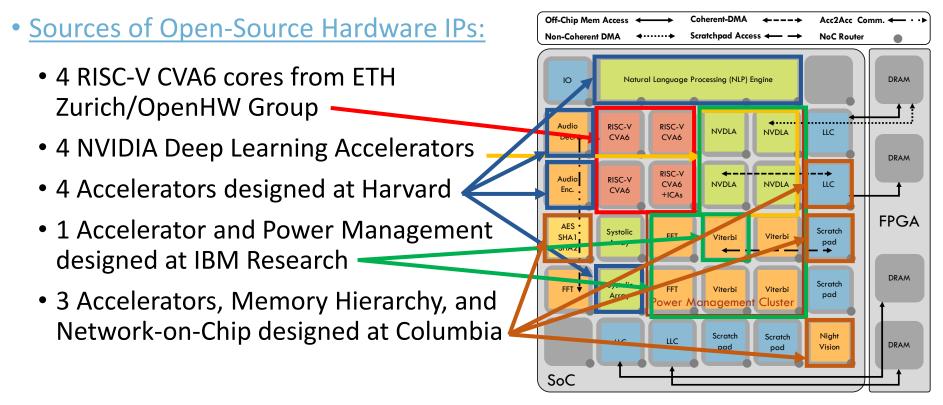
Release 2024.1.0

A new GitHub Release

ESP is Silicon Proven: The EPOCHS-1 SOC

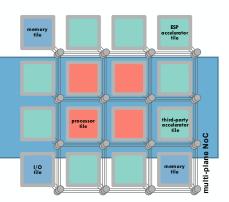
Technology	12nm FinFET			
Area	64mm ²			
#IOs	340			
Power Domains	23			
Clock Domains	35			
Power	83mW – 4.33W			
Total SRAM	8.4MB			
Max Frequency Range	680MHz – 1.6GHz			
Example Application Domain	Collaborative Autonomous Vehicles			

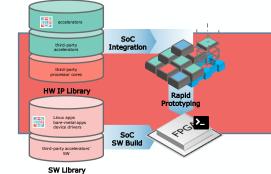
14.5 A 12nm Linux-SMP-Capable RISC-V SoC with 14 Accelerator Types, Distributed Hardware Power Management and Flexible NoC-Based Data Orchestration


Maico Cassel dos Santos*¹, Tianyu Jia*², Joseph Zuckerman*¹, Martin Cochet*³, Davide Giri¹, Erik Jens Loscalzo¹, Karthik Swaminathan³, Thierry Tambe², Jeff Jun Zhang², Alper Buyuktosunoglu³, Kuan-Lin Chiu¹, Giuseppe Di Guglielmo¹, Paolo Mantovani¹, Luca Piccolboni¹, Gabriele Tombesi¹, David Trilla³, John-David Wellman³, En-Yu Yang², Aporva Amarnath³, Ying Jing⁴, Bakshree Mishra⁴, Joshua Park², Vignesh Suresh⁴, Sarita Adve⁴, Pradip Bose³, David Brooks², Luca P. Carloni¹, Kenneth L. Shepard¹, Gu-Yeon Wei²

¹Columbia University, New York, NY; ²Harvard University, Cambridge, MA ³IBM Research, Yorktown Heights, NY; ⁴University of Illinois, Urbana, IL *Equally Credited Authors

ISSCC 2024 / SESSION 14 / DIGITAL TECHNIQUES FOR SYSTEM ADAPTATION, POWER MANAGEMENT AND CLOCKING / 14.5


The EPOCHS-1 SoC: Sources of OSH IPs



Outline

The ESP Architecture

The ESP Methodology

the open-source SoC platform

Is-based architecture and a flexible system-level design methodolog

 Image: Complexible system -level design methodolog

 OPyTorch

 HLS

Design

RTL

Design Flows

ado HLS atus HLS cfp

ESP


The ESP Vision

00

handlichte

Scalable Collaborative SoC Design

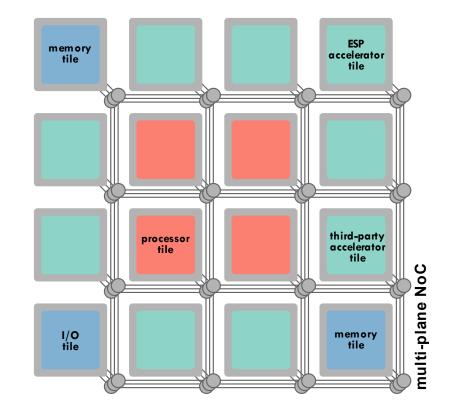
SW Library

HW TP Library

0 9 8 0

Published: Sep 11, 2020

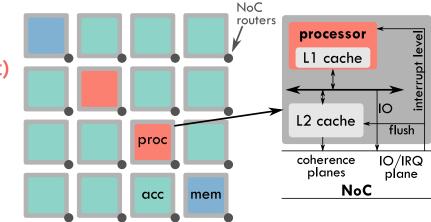
Upcoming talk at


VLSISoC 2020

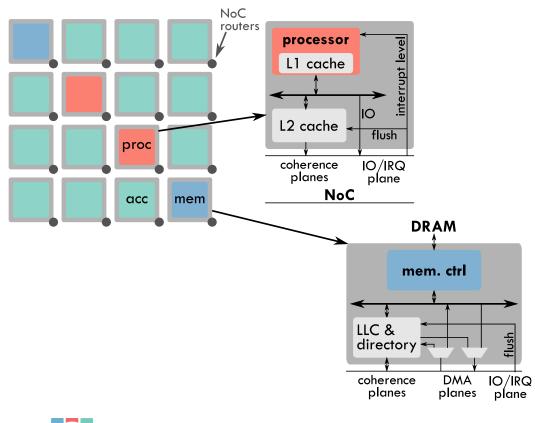
Latest Posts

ESP Architecture

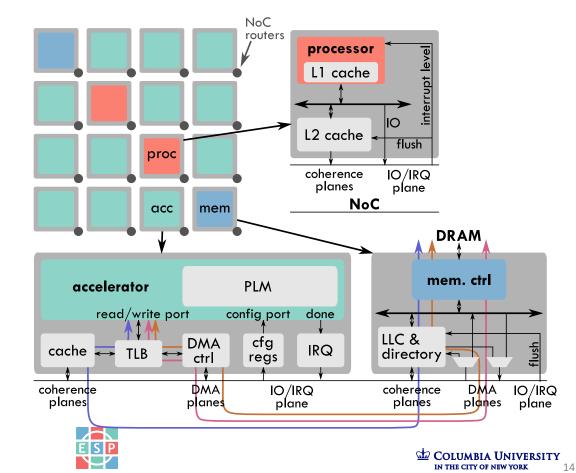
- RISC-V Processors
- Many-Accelerator
- Distributed Memory
- Multi-Plane NoC

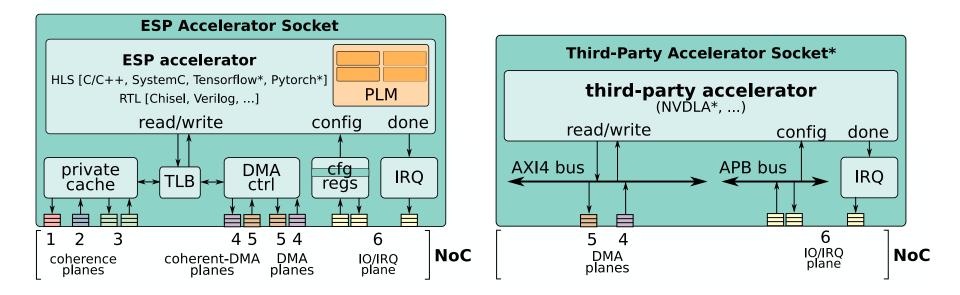

The ESP architecture implements a distributed system, which is scalable, modular and heterogeneous, giving processors and accelerators similar weight in the SoC

ESP Architecture: Processor Tile


- Processor off-the-shelf
 - RISC-V CVA6-Ariane (64 bit) SPARC V8 Leon3 (32 bit)
 RISC-V IBEX (32 bit)
 - L1 private cache
- L2 private cache
 - $_{\circ}\,$ Configurable size
 - $_{\circ}$ MESI protocol
- IO/IRQ channel
 - $_{\circ}$ Un-cached
 - Accelerator config. registers, interrupts, flush, UART, ...

ESP Architecture: Memory Tile

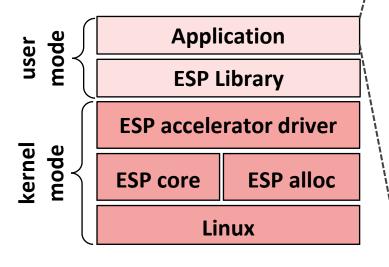

- External Memory Channel
- LLC and directory partition
 - $_{\odot}$ Configurable size
 - $_{\circ}$ Extended MESI protocol
 - Supports coherent-DMA for accelerators
- DMA channels
- IO/IRQ channel



ESP Architecture: Accelerator Tile

- Accelerator Socket w/ Platform Services
 - Direct-memory-access
 - Run-time selection of coherence model:
 - Fully coherent
 - LLC coherent
 - Non coherent
 - $_{\circ}$ User-defined registers
 - Distributed interrupt

ESP Accelerator Socket

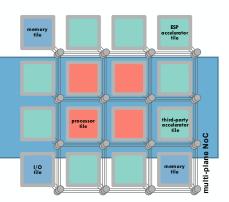


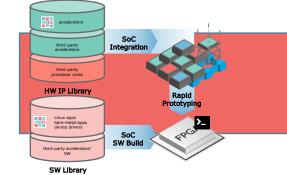
ESP Software Socket

• ESP accelerator API

- Generation of device driver and unit-test application
- $_{\circ}\,$ Seamless shared memory


```
* Example of existing C application with ESP
* accelerators that replace software kernels 2, 3,
* and 5. The cfg k# contains buffer and the
* accelerator configuration.
* /
int *buffer = esp alloc(size);
for (...) {
  kernel 1(buffer,...); /* existing software */
  esp run(cfg k2); /* run accelerator(s) */
  esp run(cfg k3);
  kernel 4(buffer,...); /* existing software */
  esp run(cfg k5);
validate(buffer); /* existing checks */
             /* memory free */
esp free();
```



ESP Platform Services


Accelerator tile DMA Reconfigurable coherence Point-to-point ESP or AXI interface DVFS controller	Processor Tile Coherence I/O and un-cached memory Distributed interrupts DVFS controller
Miscellaneous Tile Debug interface	Memory Tile Independent DDR Channel
Performance counters access Coherent DMA Shared peripherals (UART, ETH,)	LLC Slice DMA Handler

Outline

The ESP Architecture

The ESP Methodology

the open-source SoC platform

RTL

Design Flows

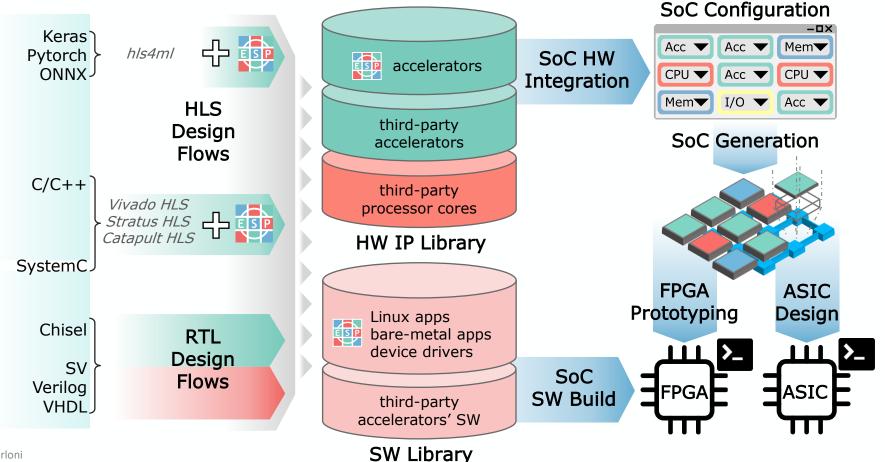
ESP

The ESP Vision

00

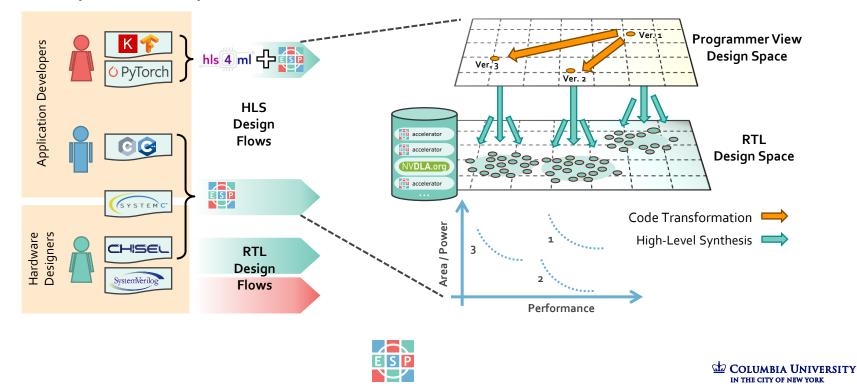
handlichte

Scalable Collaborative SoC Design

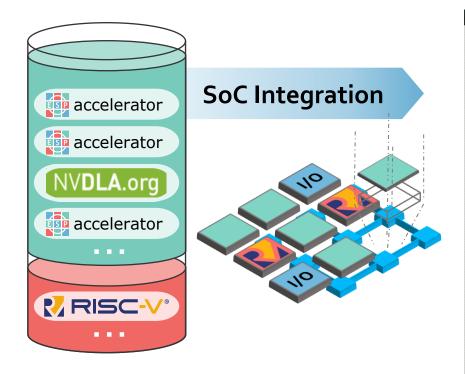


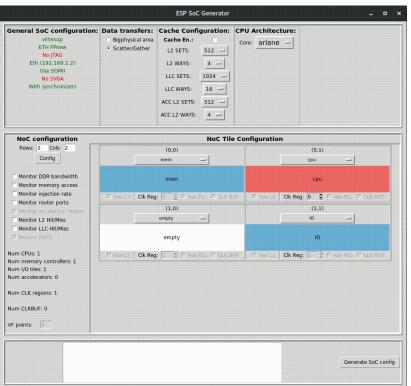
Published Sep 11, 2020

The ESP Vision: Domain Experts Can Design SoCs



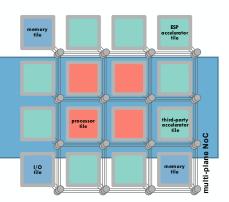
©Luca Carloni

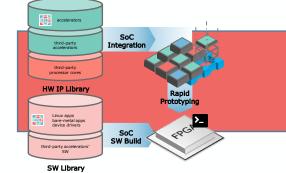

20


ESP Accelerator Flow

Developers focus on the high-level specification, decoupled from memory access, system communication, hardware/software interface

ESP Interactive Flow for SoC Integration





Outline

The ESP Architecture

The ESP Methodology

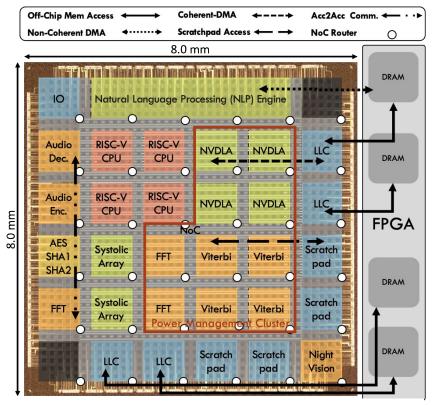
Design Flows

Scalable Collaborative SoC Design

ESP the open-source SoC platform Latest Posts 0 9 8 0 The ESP Vision le-based architecture and a flexible system-level design methodolog HLS Design 00 ado HLS atus HLS cfp HW TP Library RTL

SW Library

Upcoming talk at

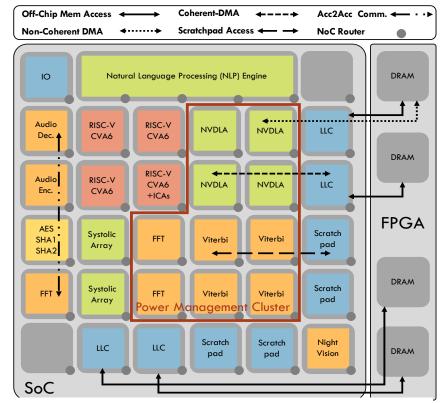

VLSISoC 2020

Published Sep 11, 2020

©Luca Carloni

The EPOCHS-1 SoC: Chip Highlights

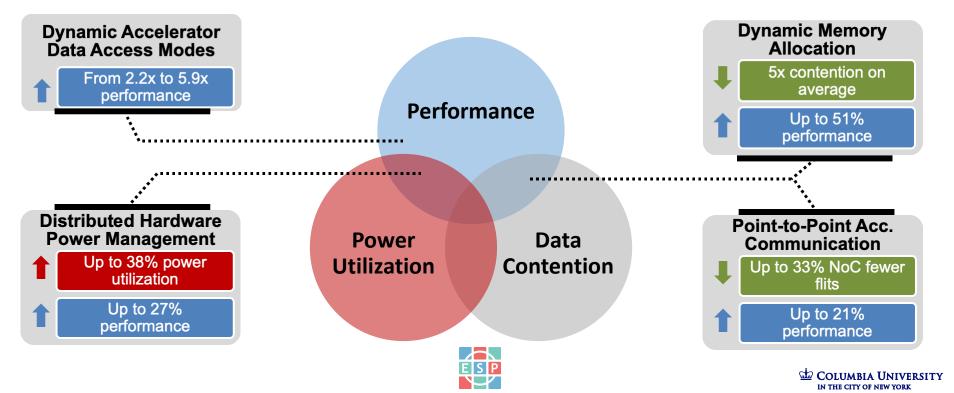
- 64 mm² SoC designed in 12 nm FinFET
- 35 clock domains; 23 power domains
- 8.4 MB on-chip SRAM memory
- Tile-based SoC architecture



[M. Cassel et al., A 12nm Linux-SMP-Capable RISC-V SoC with 14 Accelerator Types, Distributed Hardware Power Management and Flexible NoC-Based Data Orchestration, ISSCC 2024]

The EPOCHS-1 SoC: Chip Highlights

- 64 mm² SoC designed in 12 nm FinFET
- 35 clock domains; 23 power domains
- 8.4 MB on-chip SRAM memory
- Tile-based SoC architecture
- 34 tiles connected by a 6-plane 2-D mesh NoC
- The 74 Tbps NoC provides flexible orchestration of data
- 23 accelerators of 14 different types
- 10 accelerators compose a cluster demonstrating a novel distributed hardware power management scheme
- Designed by a small team of PhD students, postdocs, and industry researchers in 3 months with ESP, our open-source platform for agile SoC design



[M. Cassel et al., A 12nm Linux-SMP-Capable RISC-V SoC with 14 Accelerator Types, Distributed Hardware Power Management and Flexible NoC-Based Data Orchestration, ISSCC 2024]

EPOCHS-1 Chip: Summary

Managing resources in a large, heterogeneous SoC that runs multiple simultaneous applications is a difficult system-level challenge

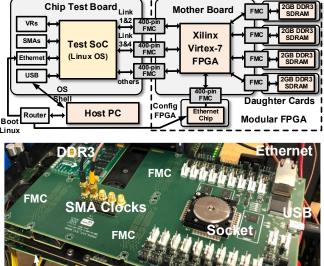
EPOCHS-1 SoC: NoC-Based Data Orchestration

- NoC traffic with 11 • accelerators executing in parallel
 - "Contention" = # of cycles when a queue is full and asserts backpressure
- 7 different configurations of the memory hierarchy
- Scaling up the memory hierarchy alleviates contention and distributes traffic

SoC	Tile	S		1	LLC	
Active Accelerator						
Active LLC/SPAD 🛧		•				
Inactive LLC/SPAD	Ì	•				
OS Reserved LLC 🔺	ł	•		•	•	•
Most Contention		•		•	•	•
Least Contention			\star	\star	\star	\star

NoC Contention Under High Utilization

The EPOCHS-o Chip

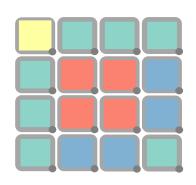

8.0mm Chip Test Board VRs SMAs Test SoC (Linux OS) Ethernet NVDLA USB Accelerator NVDLA NVDLA NVDLA os 10 (local synchronous) Acc. Acc. Host PC Router Boot Linux FFT RISC-V **RISC-V** LLC NoC Routers (global clock) 8.0mm -Acc. (Ariane) (Ariane) MEN 0-0-0 0.0.0 Technology 12nm FinFET . FET RISC-V RISC-V LLC 21.6mm² Acc. (Ariane) (Ariane) MEN Active Area FMC Total Area 64mm² LLC FFT LLC Viterbi 16 Vdd Domain # MEM MEM Acc. Acc. C4 Bump # 1439 NoC Frea. 142 – 800MHz DDR3 loC Routing L2 Cache 32 kB / 4way DDR3 512 kB / 16way LLC Cache

12nm FinFET test chip

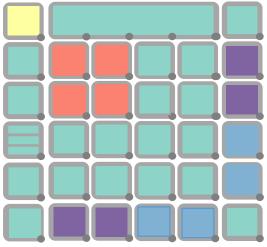
[T. Jia, et al. "A 12nm Agile-Designed SoC for Swarm-Based Perception with Heterogeneous IP Blocks, a Reconfigurable Memory Hierarchy, and an 800MHz Multi-Plane NoC, ESSCIRC 2022]

©Luca Carloni

Motherboard


Test Setup

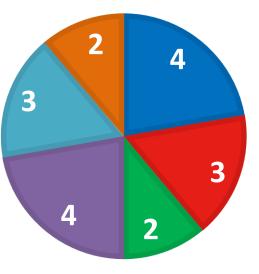
er


A Scalable Approach to Chip Design

EPOCHS-o

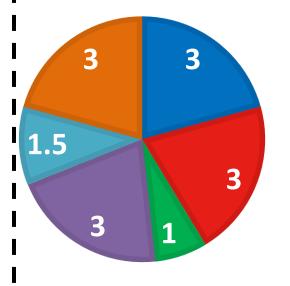
7 new accelerators tiles
2.25x more tiles
2.18x more clock domains
2.25x more power domains
2.96x more area
Same tile imp. running time
+29% top imp. running time

EPOCHS-1


- 4x4 tiles
- 21.62 mm²
- 17 clock domains
- 16 power domains
- Tile: 12 hours in 16-core 64GB RAM machine
- Top: 51 hours in 64-core 376 GB RAM machine ©Luca Carloni

- 6x6 tiles
- 64 mm²
- 37 clock domains
- 23 power domains
- Tile: 12 hours in 16-core 64GB RAM machine
- Top: 66 hours in 64-core 376 GB RAM machine

A Scalable Approach to Chip Design


EPOCHS-0 DESIGN CYCLE (WEEKS)

EPOCHS-1 DESIGN CYCLE (WEEKS)

SW Build

- IP Integration
- FPGA Emulation
- Tile Signoff
- SoC Signoff
- Verification

ESP upgrade
 IP Integration
 FPGA Emulation
 Tile Signoff

- SoC Signoff
- Verification

~ 4 months

~ 3 months

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK 3

In Summary: ESP for Open-Source Hardware

- We contribute ESP to the OSH community in order to support the realization of
 - more scalable architectures for SoCs that integrate
 - more heterogeneous components, thanks to a
 - more flexible design methodology, which accommodates different specification languages and design flows
- ESP was conceived as a heterogeneous integration platform from the start and tested through years of teaching at **Columbia University**
- We invite you to use ESP for your projects and to contribute to ESP!

🚺 Home Release Resources 🗸 News Press Team Contact

FSP

The ESP Vision

K Keras

ONNX

00

CHSEL

Verilog

VHDL

the open-source SoC platform

tile-based architecture and a flexible system-level design methodology

Design

Flows

RTL

Design

Flows

Vivado HLS Stratus HLS Catapult HLS

esp.cs.columbia.edu

Latest Posts

ESP is an open-source research platform for heterogeneous system-on-chip design that combines a scalable

accelerators

third-party

accelerators

third-party

processor core HW IP Library

Linux apps

bare-metal apps

device drivers

third-party

accelerators' SW

SW Library

SoC HW

Integration

SW Bui

SoC Configuration

Acc Y Acc Y Mem

CPU V Acc V CPU V

SoC Generation

Mem VI/O V

ESP at ISSCC!

Check out our second chip based on ESP, the open source SoC platform

Published: Mar 16, 2024

ESP provides three accelerator flows: RTL, high-level synthesis (HLS), machine learning frameworks. All three design flows converge to the ESP automated SoC integration flow that generates the necessary hardware and software interfaces to rapidly enable full-system prototyping on FPGA.

Overview

Release 2024.1.0

A new GitHub Release

The Third OSCAR Workshop

Open-Source Computer Architecture Research (OSCAR)

June 29, 2024 or Sunday, June 30, 2024 – Buenos Aires, Argentina (co-located with ISCA 2024)

Welcome to OSCAR 2024!

https://oscar-workshop.github.io/

OSCAR 2024 is the third edition of a new workshop on open-source hardware which addresses the wide variety of challenges encountered by both hardware and software engineers in dealing with the increasing heterogeneity of next-generation computer architectures. By providing a venue which brings together researchers from academia, industry and government labs, OSCAR promotes a collaborative approach to foster the efforts of the open-source hardware community in this direction.

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Some Relevant Publications

- 1. M. Cassel dos Santos et al. A 12nm Linux-SMP-Capable RISC-V SoC with 14 Accelerator Types, Distributed Hardware Power Management and Flexible NoC-Based Data Orchestration. ISSCC 2024.
- 2. M. Cassel dos Santos et al. A Scalable Methodology for Agile Chip Development with Open-Source Hardware Components. ICCAD 2022 (Invited Paper).
- 3. T. Jia et al. A 12nm Agile-Designed SoC for Swarm-Based Perception with Heterogeneous IP Blocks, a Reconfigurable Memory Hierarchy and an 800MHz Multi-Plane NoC. ESSCIRC 2022.
- 4. J. Zuckerman et al. Cohmeleon: Learning-Based Orchestration of Accelerator Coherence in Heterogeneous SoCs IEEE/ACM International Symposium on Microarchitecture (MICRO-54), 2021.
- 5. D. Giri et al. Accelerator Integration for Open-Source SoC Design. IEEE MICRO, 2021
- 6. P. Mantovani et al. Agile SoC Development with Open ESP. ICCAD 2020 (Invited Paper).
- 7. L. P. Carloni et al. Teaching Heterogeneous Computing with System-Level Design Methods, WCAE 2019.
- 8. D. Giri et al. Accelerators & Coherence: An SoC Perspective. IEEE MICRO, 2018.
- 9. L. P. Carloni. The Case for Embedded Scalable Platforms DAC 2016. (Invited Paper).
- 10. C. Pilato et al. System-Level Optimization of Accelerator Local Memory for Heterogeneous Systems-on-Chip. IEEE Trans. on CAD of Integrated Circuits and Systems, 2017.
- 11. P. Mantovani et al. An FPGA-Based Infrastructure for Fine-Grained DVFS Analysis in High-Performance Embedded Systems. DAC 2016.
- 12. L. P. Carloni. From Latency-Insensitive Design to Communication-Based System-Level Design. The Proceedings of the IEEE, November 2015.

Thank you from the **ESP** team!

esp.cs.columbia.edu

github.com/sld-columbia/esp

System Level Design Group

COMPUTER SCIENCE

