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1.2-2.2 Billion Metric-Tons CO,

2.1 - 3.9% of worldwide emissions (Freitag’21)

Mobile Communication Data center

On par with the aviation industry’s footprint



Computing’s emissions are rising given its
growing demand!

1.2-2.2 Billion Metric-Tons CO,

2.1 - 3.9% of worldwide emissions (Freitag’21)

Mobile Communication Data center

On par with the aviation industry’s footprint



Growing rate of data center energy consumption
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Growing rate of data center energy consumption
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International Telecom. Union targets a 45% reduction in ICT
emissions by 2030
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International Telecom. Union targets a 45% reduction in ICT

Operational emissions

relative to 2020

emissions by 2030
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Google Is No Longer Claiming to Be
Carbon Neutral

The tech giant, which has seen its planet-warming emissions rise because
of artificial intelligence, has stopped buying cheap offsets behind the neutrality
claim. The company now aims to reach net-zero carbon by 2030,

Google's Emissions
Artificial intelligence is putting the tech giant’s climate goals in peril
Climate plan (simulated) @ Actual
15M metric tons of CO2 equivalent

o , ! “

T T T T T T T T
2019 20 21 22 ‘23 ‘24 ‘25 26 27 28 29

Source: Google (Scopa 1, 2 and 3 data)
Nobte: Green dots represent inear decling 1o nel-zero emissions goal

2030

cnmp:m): now aims to reach net-zero carbon emissions by 2030.

The Alphabet Inc. unit has claimed that it's been carbon neutral in
its operations since 2007. The status was based on purchasing
carbon offsets to match the volume of emissions that were

The Al Race: Wiy It's So Expengive  Chip Armg Race  Global Energy Strain - DOJ Senstiny  How Chatbots Work
Green

Cleaner Tech

Microsoft’s Al Push Imperils Climate
Goal as Carbon Emissions Jump 30%

The company’s goal to be carbon negative by 2030 is harder to reach, but
President Brad Smith says the good Al can do for the world will cutweigh its
environmental impact

Microsoft's Emissions
Artificial intelligence is putting the tech giant's climate goals in peril
Climate plan (simulated) & Actual
20M metric tons of carbon dioxide equivalent

2020 il 22 ‘23 ‘24 ‘25 26 2T 28 29
nt

Sourcey: Microsoll (Scope 1, 2 and 3 "management crilera”™ data)
Y Mote: Green dots represent linear dacline lo carbon negalive goal

2030
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¥) Folow ambitious and comprehensive plans to tackle climate change. Now
the software giant's relentless push to be the global leader in

WSV artificial intelligence is purting that goal in peril
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(OEETST The Seattle-based company's total planet-warming impact is about



Goal:
Mitigate ICT carbon emissions by co-designing solutions across the stack
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ECE 6960: Sustainable Computing (Spring 2024)

ECE 6960: Sustainable Computing (Spring 2024)

Description 20 students
This graduate level course provides an overview of the holistic environmental impact of computing O 6 PhD, 1 1 Maste r’S’ 3 U nde rgraduate

platforms over the course of their lifetime. Topics include life cycle analyses of computing devices,
carbon footprint of computing, computer architecture and systems, renewable energy driven data

centers, intermittent computing, sustainable applications (e.g., Al), and emerging technologies. We . .
Surveyed a range of topics:

will understand how to evaluate and consider the holistic environmental impact of computing

platforms including carbon, water, e-waste, and materials used. Through reading, analyzing, and . M etFICS, materlal S, tOOlS, em bed ded

discussing papers, and an open-ended project students will develop a holistic understanding of the

environmental impact of computing and designing sustainable platforms. deVICeS, data Center power and
renewable energy integration, and Al

Logistics

* Room: Bloomberg Center 91 (Cornell Tech)

it i Roughly 10 final projects:

Bivievioor - 2 final projects exploring integration into
startups

Rt . Atleast 3 final projects looking to

extend into follow-on research




Goal:
Mitigate ICT carbon emissions by co-designing solutions across the stack

Economics and policy Education and Carbon accoqnting and
workforce development reporting




Today: Quantifying the carbon footprint of computing

with insights, opening new research and sustainable development opportunities

CE

it

Understanding the source of computing’s emissions

Deep dive: developing computer architectural models to estimate
CO, emissions

Cross stack: Developing modeling methods across the computing
stack
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Life Cycle Analysis: key to understanding carbon

emissions

Manufacturing

— Product Transport

Y

Product Use

Recycling
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Life Cycle Analysis: key to understanding carbon
emissions

Energy
consumption

Focus of systems, software,
and hardware designers

Manufacturing — Product Transport —~  ProductUse [~ Recycling

‘ Overheads from
“Opex” operational energy
consumption "



Life Cycle Analysis

emissions

Hardware
manufacturing

Emissions from
fabs building chips

Focus of systems, software,

Energy
consumption

and hardware designers

. key to understanding carbon

Manufacturing — Product Transport —~  ProductUse [~ Recycling
T Overheads from I Overheads from
“Capex” infrastructure related “Opex” operational energy
activities consumption o




Manufacturing dominates Apple’s overall
carbon footprint

Manufacturing

i~ Business travel
. Recycling
Product transport

Product Use

Manufacturing :Hpmduct Transport —  Product Use —-Jl Recycling
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Manufacturing dominates Apple’s overall
carbon footprint

Manufacturing

i~ Business travel
. Recycling
Product transport

’ macOs Idle
macOS Active

Product Use

Manufacturing :Hpmduct Transport —  Product Use —-Jl Recycling
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Manufacturing dominates Apple’s overall
carbon footprint

Manufacturing

Integrated circuits
account for 33% of
emissions (SoCs,
DRAMSs, NAND Flash)

Integrated Circuit

Manufacturing
accounts for 74%
of Apple’s end to
end breakdown in
2019

~Business travel
Recycling
Product transport

Displays macOS Active

Electronics Product Use

Steel  assembly

Manufacturing = Product Transport —  Product Use — Recycling

22



Crucial to look at emissions across HW cycle

CO2e (kg)
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Chip manufacturing requires cross-stack optimization
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Source: 2021 corporate sustainability reports
“Carbon Connect: An Ecosystem for Sustainable Computing” Lee et. Al. (arxiv 2024)
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Chip manufacturing requires cross-stack optimization
_Electricity [l Gases/Chemicals
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Chip manufacturing requires cross-stack optimization

Electricity

2.50
o
QN
(@)
AN 200
®)
-]
(D)
E 1.50
@
(D)
| -
N 1.00
S
‘D R~1.6 R~15
N o500 T - = - T
&
L

0.00

Growth N/A Growth 0% Growth 10%
Renewable 6% Renewable 20% Renewable 20%

Source: 2021 corporate sustainability reports
“Carbon Connect: An Ecosystem for Sustainable Computing” Lee et. Al. (arxiv 2024)

Gases/Chemicals

R~117 1506 reduction

Growth 10%
Renewable 40%



Today: Quantifying the carbon footprint of computing

with insights, opening new research and sustainable development opportunities

CE

it

Understanding the source of computing’s emissions

Deep dive: developing computer architectural models to estimate
CO, emissions

Cross stack: Developing modeling methods across the computing
stack



Current carbon accounting methodologies

Economic Input/Output
(E10)

PR
111

Carbon is tied directly to
economic cost which is

susceptible to market effects.

Life cycle analysis
(LCA)

Current databases are out-of-
date (45nm or older nodes).

LCA'’s take high $$ and time to
conduct.



Architectural Carbon Modeling Tools (ACT)

SW design &
performance

Smm

HW design &
power

Environmental

v
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Arch. Carbon Model

Carbon—aware HW
design metrics
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Architectural Carbon Modeling Tools (ACT)
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Architectural Carbon Model

Model Hardware/software input
Runtime
Carbon = OP¢p + —————Embp Performance/power/energy and
Lifetime lifetime of hardware

Energy efficiency and

OPcp = ClyseXEnergy environment (carbon intensity)

SoC,Memory,Storage

Embcr = Packaging + Z Emb, Overhead of hardware

manufacturing
r

33



Embodied carbon of application processors
(SoC’s)

Energy_ Device and fab characterization
source (grid) (industry fabs, device data)

N

Emb — Area X (Cifab Xpabenergy) + Fabcpemicais + Fabmaterials
SoC —

\ Yield

Hardware design




Embodied carbon of application processors
(SoC’s)

Embgs,. = Area X CPA
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Embodied carbon of application processors
(SoC’s)

Embs, = Area X CPA

9]

Carbon-per-area
'—I

(kg CO» per cm?)

28nm 20nm 1l4nm 10nm 8nm 7nm 5nm 3nm
(EUV) (EUV) (EUV) (EUV)

Data sources:
» [IMEC] DTCO including Sustainability: Power-Performance-Area-Cost-Environmental score
(PPACE) Analysis for Logic Technologies. Bardon et. al (IEDM 2020)
» [TSMC] TSMC Sustainability Reports 2018-2020 36



Embodied carbon of application processors
(SoC’s)

Embgs,. = Area X CPA

i .

TG, Fab with coal

T 0 (0% renewable)

(Il o

cC ~

801"

S Fab with solar (100% renewable)
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(EUV) (EUV) (EUV) (EUV)

Data sources:
» [IMEC] DTCO including Sustainability: Power-Performance-Area-Cost-Environmental score
(PPACE) Analysis for Logic Technologies. Bardon et. al (IEDM 2020)
» [TSMC] TSMC Sustainability Reports 2018-2020 37



Embodied carbon of application processors
(SoC’s)

Embs, = Area X CPA

© S
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g g (0% renewable) (25% renewable)
& o

801"

S Fab with solar (100% renewable)

28nm 20nm 14nm 10nm 8nm 7nm  5nm 3nm
(EUV) (EUV) (EUV) (EUV)

Data sources:
» [IMEC] DTCO including Sustainability: Power-Performance-Area-Cost-Environmental score
(PPACE) Analysis for Logic Technologies. Bardon et. al (IEDM 2020)
» [TSMC] TSMC Sustainability Reports 2018-2020 38



Comparing ACT with Apple’s product environmental
reports
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Comparing ACT with Apple’s product environmental

reports

B OtherIC’s [ CameralC’s I Flash LCA-based top-down
Il Bionic SoC [ IC Packaging [ DRAM

o
o

Carbon footprint(kg CO)

¢
ACT embodied Apple iPhone

[
A

=
o

n

17kgCO,  23kg CO,

28%

estimate estimates

30

20 1

10

21kg CO,

28kg CO,

33%

ACT embodied Apple iPad

estimate

estimates
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Setting the standard for data
center sustainability

2023 Meta Sustainability Report

Understanding the life
cycle impact of data

center components

In 2022, the teams reached more
than 90% coverage, meaning
there is primary data, an LCA,

or a modeled # value assigned

to each asset. This dataset lays




Tenets of Environmental Design

Design leaner footprint
Red u Ce software and hardware.

oD

Recycle

Recover discarded systems
and components.

Reuse

Repurpose systems
already produce.
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Tenets of Environmental Design

Recycle

Recover discarded systems
and components.

Design leaner footprint
Red u Ce software and hardware.

oD

Reuse

Repurpose systems
already produce.
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Reuse: General purpose versus custom mobile HW

{

Commodity (mobile CPU)
Specialized (mobile GPU)

}ﬁ

Architectural
Carbon Model

Carbon per inference

44



Reuse: General purpose versus custom mobile HW

{

Commodity (mobile CPU)
Specialized (mobile GPU)

}ﬁ

Architectural
Carbon Model

Carbon per inference

Energy (mJ)

40
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X

GPU
(+CPU)
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Reuse: General purpose versus custom mobile HW

Commodity (mobile CPU) Architectural e =
Specialized (mobile GPU) Carbon Model arpon per interence
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Reuse: General purpose versus custom mobile HW

Commodity (mobile CPU) Architectural
Specialized (mobile GPU) Carbon Model

Carbon per inference
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ACT: Architectural Carbon Modeling Tool

ACT An Architectural Carbon Modeling Tool for Designing Sustainable Computer Systems

View on GitHub

ACT: Architectural Carbon Modeling Tool

Abstract

Motivation: Over the past two decades, the world has witnessed a dram ‘ise in computing across
data centers, mobile, and communication technologies. As of 2015 ! o computing
technology (ICT) accounts for up to 3% of global carbon emi= G@ as the demand for

computing grows with new applications and platform= w Gﬁ‘ Nany technology

companies, including Microsoft, Google, Facebn a P 1uce their carbon
footprints over the next decade. Meeting ! 06 15' outing requires
immediate action from the system= ‘\ “e

Background: In additior S \ “\e ustainable computing
introduces unique o w ‘0‘ a s(, carbon emissions are shifting

from being domin: OLA ‘ . to hardware manufacturing. Traditionally
the majority of emis fL zie use (i.e., energy consumption). However,
given the energy effic| increasing fabrication complexity, the majority of
carbon emissions have .are manufacturing. Given these new challenges, enabling
environmentally sustaine 1puting demands distinct solutions across the computing stack,
hardware life cycles, and erid-to-end systems.

48



“Inherent Uncertainty: Uncertainty is inherent to most GHG accounting methodologies and

results, and it increases when consideration enabled emissions reductions due to a lack of
primary data and precise information about real-world actions and their effects. However,

understanding the sources es, and magnitude of uncertainty is crucial to deplo

conservative estimates, inform improved data inputs, and properly interpret results.”

Google

49



12207.10793v2 [cs.AR] 28 Sep 2023

Uncertainty is inherent in
carbon accounting

Cradle-to-gate

INTRODUCTION
efliciencies

The Dirty Secret of SSDs: Embodied Carbon

SWAMIT TANNU, University of Wisconsin, Madison, USA
PRASHANT J. NAIR, University of Brtish Colursbia, Canada

e Cycle Assessment of CMOS Logic
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Uncertainty is inherent in
carbon accounting

Total Carbon Emissions for
Various Process Nodes

Cradle-to-gate Life Cycle As:
L Bk M G oo, V. Scbelke LY. L

kg CO, eg/cm?

1.0
N28  N20 N14 N10 N7 N5 N3 N2A14
Technology Process Node .
The Dirty Secret of SSDs: Embodied Carbon Histogram of SSD
SUAMIT TANN e Storage Embodied Factors
40 SEF =450
30
k=
320
(&)
10
> 4x
0
0.1 0.2 0.3 0.4

Storage Embodied Factor (SEF)

ato(CHOS Loge Termclogls 3.0] —— Bardon 2020 Open research questions:

—e— Boakes 2023

What magnitude uncertainty exists
across all IC components?

What degree of uncertainty exists in
embodied versus operational carbon?

How do we consider uncertainty in
carbon-aware hardware design to
enable robust sustainable computing
decisions?



Today: Quantifying the carbon footprint of computing

with insights, opening new research and sustainable development opportunities

CE

it

Understanding the source of computing’s emissions

Deep dive: developing computer architectural models to estimate
CO, emissions

Cross stack: Developing modeling methods across the computing
stack
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Need to go beyond architecture centric-view
for cross-stack carbon accounting

Environmental

)
M N
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Fab

SW design & !
performance

Arch. Carbon Model

Operational CO
> Carbon—-aware HW > P 2

: . Embodied CO,
design metrics

@ N :
Architecture I

< 4 IR 1
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@ ‘ . HW design & e CO,-aware | _ _ _ _ _ _ _ __ r

Circuits pawear HW optimization
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Instrumenting Cornell’s NanoScale Facility

Application

OS/Run-time

Systems

Compiler

Architecture

Wafers in

Cleanroom Tool

Gas flow
sSensors

Process Parameters

Metrology
e.g, CD-SEMs

CD-SEMS

Cleanroom Al
Model

Resource use data
Environmental
carbon
calculator

Process

yield, Digital/Analog

through
put Design for

Carbon offsets

Carbon
Model

CAD energy use
optimization

c~ ‘ Cornell NanoScale

Science and Technology Facility



Rising emissions from Al Footprint

Application

@ DY
OS/Run-time
A 4
@ DY
Systems
A
Compiler

Architecture

Circuits

Devices &
Technology

Model Growth

* State-of-the-art DL models growing in
capacity by 10x/year

Data Growth
s 43X — RMiData
2535 RM2 Data &L,L\ MM
3,7‘;3 2;3; —Data Ingestion BW 1 ‘,‘W
£3572 M
283 M
%%03
3 o

Time

For recommendation models, in two years:
. Data stored and used doubled
*  Storage bandwidth grew by 3.2x

Systems Growth
X 2.9x
«# Training -e-Inference 4-'
22 e
g 2
S o o
E 2 O X
e . .
z S o ®
@ o
I % .
.
= PATE S
Yri-Q1 Yr1-Q2 Yr1-Q3 Yr1-Q4 Yr2-Q1 Yr2-Q

In 1.5 years:

Training capacity grew by 2.9x
Inference capacity grew by 2.5x



Crucial to look at emissions across ML cycle
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Architecture
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Machine learning life cycle

Training and

Data : :
Collection experimentation
(31%) (29%)
Inference
(40%)



Crucial to look at emissions across ML cycle
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Crucial to look at emissions across ML cycle

Inference Server
Embodied Carbon

p
Compiler
N\
e
Architecture

E Application } Inference Power

)

S

-

Circuits Research questions:
> * Howdo the breakdowns scale for different Al applications and hardware?
Devices & *  How do we co-optimize Al systems for end-to-end carbon?

Technology |

“Towards Carbon-efficient LLM Life Cycle” Yueying Li, Omer Graif, Udit Gupta (HotCarbon 2024)



Carbon Explorer: Carbon-Aware Datacenter Design

Application

-

&

OS/Run-time

~

4

p

Systems

~

Compiler

Architecture

Circuits

Devices &
Technology

EEE

I
i
i
i
I
:
i

¥

Hourly solar and wind
power supply per region

1. Renewable Deployment

e

+ Renewable coverage increased

- Additional manufacturing
carbon cost for renewables

- Excess renewable supply
increased

2. Battery Deployment

Discharge

+ Renewable coverage increased

- Manufacturing
carbon cost for batteries

3. Carbon Aware Scheduling

=== Balanced Power
= Load

+ Renewable coverage increased
- Peak capacity increased

- Manufacturing carbon cost
for additional servers

Optimizing both gperational and embodied carbon requires balancing

(1) renewable deployment, (2) battery deployment, (3) carbon-aware scheduling

“Carbon Explorer: A Holistic Framework for Designing Carbon Aware Data centers” Acun et. al. (To appear in ASPLOS 2023)




Attributing carbon footprint of cloud usage
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Application
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Compiler
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=E Microsoft I Sustainability Products & solutions v Sustainability

AWS Customer Carbon
Footprint Tool

Emissions Impact
Dashboard

Go gle Cloud Overview  Solutions  Products  Pricing  Resources

Carbon Footprint

Carbon Footprint Carbon Footprint

Benefits .
I Measure, report, and reduce your cloud carbon emissions.



Fairly attributing carbon

P
. : Carbon accounting in the Cloud:
Appll cation a methodology for allocating emissions across
data center users
@ Ian Schneider} Taylor Mattia*t
OS/Run-time
A

1 Introduction

S Google has undertaken considerable efforts to reduce electricity consumption
yste ms and the associated greenhouse gas (GHG) emissions from its electricity use. By
2022, Google delivered approximately three times as much computing power
with the same amount of electrical power as it did five years prior [1]." Google
uses 5.5 times less overhead energy for every unit of information-technology
(IT) equipment energy, compared to the industry average [1]. Even with these
dramatic improvements in efficiency, Google consumed 22 TWh of electricity in
C Omp i I er 2022, with the majority of its electricity consumption coming from data center

operations [1].

Architecture

Circuits

Devices &
Technology




Fairly attributing carbon
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Carbon accounting in the Cloud:
a methodology for allocating emissions across
data center users

Ian Schneider} Taylor Mattia*t

June 2024

1 Introduction

Google has undertaken considerable efforts to reduce electricity consumption
and the associated greenhouse gas (GHG) emissions from its electricity use. By
2022, Google delivered approximately three times as much computing power
with the same amount of electrical power as it did five years prior [1]." Google
uses 5.5 times less overhead energy for every unit of information-technology
(IT) equipment energy, compared to the industry average [1]. Even with these
dramatic improvements in efficiency, Google consumed 22 TWh of electricity in
2022, with the majority of its electricity consumption coming from data center
operations [1].

Data Serving

Data Caching

Graph Analytics 0 i
raph Analytics Operatlona|

o 11s S5 Breakdown
Graph Analytics 1 In-Mem. Analytics 1

In-Mem, Analytics 0

Data Serving Data Caching
Graph Analytics 0 I
'0.195 In-Mem. Analytics 1 Em bOd ! ed
Breakdown

0.155

Graph Analytics 1
In-Mem. Analytics 0

Open research questions:

* How do we fairly attribute operational
and embodied carbon to individual
cloud services?

* How do we consider varying demand in
data centers in attributing carbon
responsibility?

» How do we scale attribution
mechanisms to cloud-scale?
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*  Storage bandwidth grew by 3.2x
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In 1.5 years:

Training capacity grew by 2.9x
Inference capacity grew by 2.5x

Recent advances in LLMs further exacerbating model, data, and systems trends!
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Data from public industry validated sustainability reports and life cycle analyses
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Carbon footprint characteristics vary across devices

Data from public industry validated sustainability reports and life cycle analyses
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Semiconductor
fab
Wafer & gas (10%)

PFCs (10%) \\‘
Chemical'
(15%)

Gupta et. al. Chasing Carbon: The Elusive Environmental Footprint of Computing (HPCA 2021)



Semiconductor 100% Renewable powered
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Reduces manufacturing footprint by 2.5x
Gupta et. al. Chasing Carbon: The Elusive Environmental Footprint of Computing (HPCA 2021)




“Green” powered fabs are not enough

Semiconductor 100% Renewable powered
fab TSMC plans for semiconductor fab
Wafer & gas (10%) 25% renewable by 2025 and
100% renewable by 2050.
PFCs (10%) k\‘
Chemical’ I I
(15%)

Reduces manufacturing footprint by 2.5x

Gupta et. al. Chasing Carbon: The Elusive Environmental Footprint of Computing (HPCA 2021)
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Runtime
Carbon = OP¢p + —————Embp Performance/power/energy and
Lifetime lifetime of hardware
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Architectural Carbon Model

Model Hardware/software input
Runtime
Carbon = OP¢p + ————— Emb,p Performance/power/energy and
Lifetime lifetime of hardware

Energy efficiency and

OPcp = ClyseXEnergy environment (carbon intensity)
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Embodied carbon of application processors
(SoC’s)

(Cffab XFabenergy) + Fabchemicais + Fabmaterials

= X
Embg, = Area Vield
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Jevon’s paradox of Al at-scale
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Reduce: Designing leaner hardware systems
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DRAM Memory Embodied Carbon Emissions
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