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1.2-2.2 Billion Metric-Tons CO2

2.1 - 3.9% of worldwide emissions (Freitag’21)

Mobile Communication Data center

On par with the aviation industry’s footprint
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Computing’s emissions are rising given its 
growing demand!

1.2-2.2 Billion Metric-Tons CO2

2.1 - 3.9% of worldwide emissions (Freitag’21)

Mobile Communication Data center

On par with the aviation industry’s footprint



Growing rate of data center energy consumption 
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Annual increase in US renewables (7% CAGR)

Data center growth accounts for ~45% of new renewables

25% CAGR 20% CAGR



International Telecom. Union targets a 45% reduction in ICT 
emissions by 2030

36% CO2 

reduction 
by 2030

No growth ICT emissions

(“status quo”)
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20 students 

• 6 PhD, 11 Master’s, 3 Undergraduate

Surveyed a range of topics: 

• Metrics, materials, tools, embedded 
devices, data center power and 

renewable energy integration, and AI

Roughly 10 final projects: 

• 2 final projects exploring integration into 
startups

• At least 3 final projects looking to 
extend into follow-on research



Photos, illustrations, graphics here.

Education slide

Goal: 
Mitigate ICT carbon emissions by co-designing solutions across the stack 

Economics and policy Education and 

workforce development

Carbon accounting and 

reporting



Today: Quantifying the carbon footprint of computing
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Understanding the source of computing’s emissions 

Deep dive: developing computer architectural models to estimate 
CO2 emissions

Cross stack: Developing modeling methods across the computing 
stack

SW

HW

with insights, opening new research and sustainable development opportunities



Life Cycle Analysis: key to understanding carbon 
emissions
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Energy 
consumption

Focus of systems, software, 
and hardware designers

“Opex”
Overheads from 

operational energy 
consumption



Life Cycle Analysis: key to understanding carbon 
emissions
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Energy 
consumption

Focus of systems, software, 
and hardware designers

“Opex”“Capex”

Hardware 
manufacturing

Emissions from 
fabs building chips

Overheads from 
infrastructure related 

activities

Overheads from 
operational energy 

consumption



Manufacturing dominates Apple’s overall 
carbon footprint
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Manufacturing dominates Apple’s overall 
carbon footprint

22

Integrated circuits 
account for 33% of 
emissions (SoCs, 
DRAMs, NAND Flash) 

Manufacturing 
accounts for 74% 
of Apple’s end to 
end breakdown in 
2019



Crucial to look at emissions across HW cycle



Chip manufacturing requires cross-stack optimization

Source: 2021 corporate sustainability reports

“Carbon Connect: An Ecosystem for Sustainable Computing” Lee et. Al. (arxiv 2024) 
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Chip manufacturing requires cross-stack optimization

Source: 2021 corporate sustainability reports

“Carbon Connect: An Ecosystem for Sustainable Computing” Lee et. Al. (arxiv 2024) 
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Understanding the source of computing’s emissions 

Deep dive: developing computer architectural models to estimate 
CO2 emissions

Cross stack: Developing modeling methods across the computing 
stack

SW

HW

with insights, opening new research and sustainable development opportunities



Current carbon accounting methodologies

Economic Input/Output
(EIO)

Life cycle analysis
(LCA)

Carbon is tied directly to 

economic cost which is 
susceptible to market effects. 

Current databases are out-of-

date (45nm or older nodes).

LCA’s take high $$ and time to 
conduct.
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SW design &
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design metrics

SW design &

performance

HW design &

power

Fab Environmental

Operational CO2
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CO2 -aware 

HW optimization

Architectural Carbon Modeling Tools (ACT) 
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Architectural Carbon Model

Performance/power/energy and 

lifetime of hardware

Energy efficiency and

environment (carbon intensity)

Overhead of hardware 

manufacturing

Model Hardware/software input
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Embodied carbon of application processors 

(SoC’s)

Hardware design

Energy 

source (grid)
Device and fab characterization

(industry fabs, device data)
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Embodied carbon of application processors 

(SoC’s)
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Embodied carbon of application processors 

(SoC’s)

Data sources:

• [IMEC] DTCO including Sustainability: Power-Performance-Area-Cost-Environmental score 

(PPACE) Analysis for Logic Technologies. Bardon et. al (IEDM 2020)

• [TSMC] TSMC Sustainability Reports 2018-2020
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Embodied carbon of application processors 

(SoC’s)

Fab with coal 

(0% renewable)

Fab with solar (100% renewable)

Data sources:

• [IMEC] DTCO including Sustainability: Power-Performance-Area-Cost-Environmental score 

(PPACE) Analysis for Logic Technologies. Bardon et. al (IEDM 2020)

• [TSMC] TSMC Sustainability Reports 2018-2020
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Embodied carbon of application processors 

(SoC’s)

TSMC 2025 goal

(25% renewable)
Fab with coal 

(0% renewable)

Fab with solar (100% renewable)

Data sources:

• [IMEC] DTCO including Sustainability: Power-Performance-Area-Cost-Environmental score 

(PPACE) Analysis for Logic Technologies. Bardon et. al (IEDM 2020)

• [TSMC] TSMC Sustainability Reports 2018-2020



Apple iPhone 

estimates

Apple iPad 

estimates

ACT embodied 

estimate

ACT embodied 

estimate

Comparing ACT with Apple’s product environmental 

reports
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Comparing ACT with Apple’s product environmental 

reports

Apple iPhone 

estimates

Apple iPad 

estimates

ACT embodied 

estimate

ACT embodied 

estimate
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Tenets of Environmental Design

42

Reduce

ReuseRecycle

Design leaner footprint 

software and hardware.

Repurpose systems 

already produce. 
Recover discarded systems 

and components. 
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Reduce

ReuseRecycle

Design leaner footprint 

software and hardware.

Repurpose systems 

already produce. 
Recover discarded systems 

and components. 
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Commodity (mobile CPU)

Specialized (mobile GPU)
Carbon per inference

Reuse: General purpose versus custom mobile HW
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Architectural 
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“Inherent Uncertainty: Uncertainty is inherent to most GHG accounting methodologies and 

results, and it increases when consideration enabled emissions reductions due to a lack of 

primary data and precise information about real-world actions and their effects. However, 

understanding the sources, types, and magnitude of uncertainty is crucial to deploy 

conservative estimates, inform improved data inputs, and properly interpret results.” 



1.5x > 4x

1.5x > 4x

Uncertainty is inherent in 
carbon accounting



1.5x > 4x

1.5x > 4x

Open research questions: 

• What magnitude uncertainty exists 
across all IC components? 

• What degree of uncertainty exists in 

embodied versus operational carbon?

• How do we consider uncertainty in 

carbon-aware hardware design to 
enable robust sustainable computing 

decisions?

Uncertainty is inherent in 
carbon accounting
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Understanding the source of computing’s emissions 

Deep dive: developing computer architectural models to estimate 
CO2 emissions

Cross stack: Developing modeling methods across the computing 
stack

SW

HW

with insights, opening new research and sustainable development opportunities



Need to go beyond architecture centric-view 
for cross-stack carbon accounting
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Instrumenting Cornell’s NanoScale Facility
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Rising emissions from AI Footprint 
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Application

OS/Run-time

Compiler

Architecture

Circuits

Devices &

Technology

Systems

Crucial to look at emissions across ML cycle

Data 
Collection 

(31%)

Training and 
experimentation

(29%)

Inference
(40%)

Machine learning life cycle
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OS/Run-time

Compiler

Architecture
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Devices &
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Crucial to look at emissions across ML cycle

CPU

8xNVIDIA T4

CPU

8xNVIDIA T4

Research questions: 
• How do the breakdowns scale for different AI applications and hardware? 
• How do we co-optimize AI systems for end-to-end carbon?

Inference Power Inference Server 
Embodied Carbon

“Towards Carbon-efficient LLM Life Cycle” Yueying Li, Omer Graif, Udit Gupta (HotCarbon 2024)



Carbon Explorer: Carbon-Aware Datacenter Design

Application

OS/Run-time

Compiler

Architecture

Circuits

Devices &

Technology

Systems

Optimizing both operational and embodied carbon requires balancing 
(1) renewable deployment, (2) battery deployment, (3) carbon-aware scheduling 

“Carbon Explorer: A Holistic Framework for Designing Carbon Aware Data centers” Acun et. al. (To appear in ASPLOS 2023)



Attributing carbon footprint of cloud usage
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Fairly attributing carbon

Application

OS/Run-time

Compiler

Architecture

Circuits

Devices &

Technology

Systems

Operational 

Breakdown

Embodied 

Breakdown

Open research questions: 

• How do we fairly attribute operational 
and embodied carbon to individual 

cloud services? 

• How do we consider varying demand in 
data centers in attributing carbon 
responsibility? 

• How do we scale attribution 

mechanisms to cloud-scale? 



Key takeaways

Pillars of Advancing
Sustainable Computing 

Economics & Policy 
Education

Accounting and Reporting

Must analyze emissions 
across life cycles

Across hardware 
manufacturing to 
operational use

Dire need for cross-
stack carbon 
optimization

From applications to devices
Across eco-HW/SW design 

loop

Quantifying the carbon footprint of AI and computing: Past, Present, and Future
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AI Growth Driving Datacenter Energy Consumption 

Model Growth Systems GrowthData Growth

For recommendation models, in two years: 
• Data stored and used doubled

• Storage bandwidth grew by 3.2x

In 1.5 years: 
• Training capacity grew by 2.9x
• Inference capacity grew by 2.5x 

• State-of-the-art DL models growing in 
capacity by 10x/year

Recent advances in LLMs further exacerbating model, data, and systems trends!
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Data from public industry validated sustainability reports and life cycle analyses

Battery operated Plugged in
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Data from public industry validated sustainability reports and life cycle analyses

Battery operated Plugged in

Roughly 75% life 
cycle emissions 
for battery 
operated 
devices comes 
from hardware 
manufacturing. 



Carbon footprint characteristics vary across devices

74

Emissions for 
always-connected 
devices come 
mainly from 
energy 
consumption

Roughly 75% life 
cycle emissions 
for battery 
operated 
devices comes 
from hardware 
manufacturing. 

Data from public industry validated sustainability reports and life cycle analyses

Battery operated Plugged in
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“Green” powered fabs are not enough

Semiconductor 

fab

Energy 

(60%)Chemicals 

(15%)

PFCs (10%)

Wafer & gas (10%)

100% Renewable powered 

semiconductor fab

Reduces manufacturing footprint by 2.5x

TSMC plans for

25% renewable by 2025 and 

100% renewable by 2050. 

Gupta et. al. Chasing Carbon: The Elusive Environmental Footprint of Computing (HPCA 2021)
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Architectural Carbon Model
Model Hardware/software input



79

Architectural Carbon Model

Performance/power/energy and 

lifetime of hardware

Model Hardware/software input
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Architectural Carbon Model

Performance/power/energy and 

lifetime of hardware

Energy efficiency and

environment (carbon intensity)

Model Hardware/software input
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Embodied carbon of application processors 

(SoC’s)



Jevon’s paradox of AI at-scale
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Reduce: Designing leaner hardware systems
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Reduce: Designing leaner hardware systems

CO2 opt.
Energy

opt.

Performance 

opt.

30 FPS 

target

Architectural 

Carbon Model

Performance/energy vs.

Carbon

3x carbon 

decrease!

Nvidia DL Accelerator (NVDLA)
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Architectural 
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Performance/energy vs.
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Reduce: Designing leaner hardware systems

Architectural 

Carbon Model

Performance/energy vs.

Carbon

2mm2

area

30% carbon 

increase
(Jevon’s paradox)

Nvidia DL Accelerator (NVDLA)

CO2 opt.
Energy

opt.

Performance 

opt.

30 FPS 

target

3x carbon 

decrease!
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DRAM Memory Embodied Carbon Emissions
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