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Accelerating discovery using AI assistants
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Hypothesize

Test

AssessReport

Question

Study
Extraction, integration and 
reasoning with knowledge at scale

Tools help identify new 
questions based on needs 
and gaps in knowledge

Machine representation of knowledge 
leads to new hypotheses and 
questions

Generative models automatically 
propose new hypotheses that 
expand the discovery space

Robotic labs automate 
experimentation and bridge 
digital models and physical 
testing

Pattern and anomaly detection is 
integrated with simulation and 
experimentation to extract new 
insights



ARTIFICIAL INTELLIGENCE 
GUIDED, ROBOTICALLY EXECUTED EXPERIMENTS

Autonomous Discovery @Argonne
▪ The vision

– A system that starts with a high-level 
description of a hypothesis and autonomously 
carries out computational and experimental 
workflows to confirm or reject that hypothesis

– Use of AI in robotics and simulations to close 
the loop on planning, execution, and analysis 
of experiments

▪ Builds on 
– AI approaches to planning (multiple steps), 

and integration of results, causality, etc.
– Machine learning/simulation to design and 

predict properties and outcomes
– Automation of experimental protocols 

(robotic steps and workflows)
– Active Learning or RL for selection of next 

experimental targets, etc.

https://github.com/anl-sdl/

https://www.cs.uchicago.edu/~rorymb/  



Agentic implementation of laboratory workflows
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Disordered proteins span over 30% of the human 
proteome and are important drug targets
▪ Proteins without a stable tertiary structure:

– High flexibility
– Adaptable binding interfaces

▪ 65% of these proteins are involved in 
diseases:
– Cancer
– Neurodegenerative 
– Cardio-vascular
– Diabetes 

▪ We want to largely target the “undruggable” 
genome as part of this project

▪ This is not restricted to just human 
genomes; we are looking at viral, bacterial, 
fungal pathogens (for infectious diseases) Uversky, V., Oldfield, C., Dunker, K., (2008) Annu. Rev. Biophys., 37: 215-246

Liu, J., Faeder, J.R., Camacho, C.J., (2009) Proc. Natl. Acad. Sci. USA, 106 (47): 19189
Dyson, J.H., Wright, P.E., (2015) Nat. Rev. Mol. Cell Biol., 



Background: Biomolecular dynamics spans multiple 
length- and time-scales… 



… current AI ecosystem of tools are not biophysically 
aware

AlphaFold3: Sometimes remarkable results 
have interesting failure modes…  

DiffDock/NeuralPlexer: none of 
them able to associate protein-
protein interactions or protein-
ligand interactions accurately
DiffDock: https://arxiv.org/html/2402.18396v1
NeuralPlexer: 
https://www.nature.com/articles/s42256-024-
00792-z 

AlphaFold3: https://www.nature.com/articles/s41586-024-07487-w

BioEmu: ~200 ms of simulation 
training time, but applications are 
still limited
Scalable emulation of protein equilibrium ensembles 
with generative deep learning

Sarah Lewis,et al, , Cecilia Clementi, Frank Noé

https://doi.org/10.1101/2024.12.05.626885 
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▪ Can we use AI to effectively learn biophysically relevant features automatically? 
– DeepDriveMD: Accelerating biomolecular simulations with surrogate models 
– StreamAI-MD: Heterogeneous computing to accelerate simulation workflows 

▪ Can we use AI to effectively accelerate length- and time-scales accessible to MD 
simulations to bridge multi-modal experimental techniques?
– Intelligent Resolution: Integrating cryo-EM with X-ray crystallography using AI-

driven simulation workflows
– AA2CG2AA: Agentic AI to allow all-atom to coarse-grained to all-atom simulation 

campaigns

▪ Can we use AI to guide experimental campaigns for enabling biological systems 
design? 
– Experiments in loop for designing better enzymes by integrating multi-modal data
– Using AI to simulate actual labs  



Standard simulation approaches face significant data movement and 
parallel analytics challenges 

• In situ analytics
• Reduced data 

movement and other 
overheads

• Online monitoring and 
feedback

Need for interleaving analytics (AI/ML) + Simulations (HPC)

Job scheduler

Simulation(s)

Data storage (Disks)

Analytics

Visualization
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• Large simulations generate > O(100 TB) of data
• Humanly impossible to peek into “biologically” interesting events!
• http://deepdrivemd.github.io 

• Ma, Lee, et al. PARCO (2019)
• Lee, Ma, et al. Workshop on Deep Learning on Supercomputers, Supercomputing (2019)

Ensemble Toolkit Workflow



Protein conformations
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• Bhowmik, Gao, et al. BMC Bioinformatics (2018)
• Romero, Ramanathan, et al. Proc. Natl. Acad. Sci. USA (2019)

Computational challenges

• Representation of contact maps as sparse matrices 

• Parameters for training – O(1012) → harder to train



Deep learning can identify reaction coordinates for 
complex conformational transitions 

How does the spike protein open to 
fuse with human cells? 

T Sztain*, SH Ahn*,...LTC, R Amaro. Nat. Chem. (2021).
A Trifan, T Sztain, et al, LTC, A. Ramanathan, R. Amaro IJHPCA (2020, 2021)
A. Ramanathan, et al Current Opinion in Structural Biology (2019)
D. Bhowmik, et al, BMC Bioinformatics (2017)  

Low-dimensional  latent representation learned by 
convolutional variational autoencoder

software/notebooks: https://github.com/ramanathanlab/deepdrivemd 



DeepDriveMD enables 4-fold acceleration of 
sampling effectiveness for FSD-EY (𝜷𝜷𝜶) folding

DeepDriveMD 
enables 104X speedup 

• Embedding states into the VAE latent 
space and clustering with k-means keeps a 
constant definition of the number of states 
sampled  enabling fair comparison 
between simulations

• The ML + RMSD strategy reaches 80% 
sampling at least 4 fold faster than Anton-1 
simulations

• Integrating with weighted ensemble 
techniques we can get access to kinetics

Note: Uncertainty from 10 trials is shown in light red12
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Joint work with Alexander Brace, Nick Frazee, Jeremy Leung, Lillian Chong (University of Pittsburgh)



Bridging ThetaGPU + CS-1 with Stream-AI-MD
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● 18 hrs walltime (Stream-AI-MD) vs. 923 
hrs (est. A100) 

● ~50X speed-up (sampling folded states) 



Accelerating MD simulations with surrogate models 
provides ~103-5 speedup for protein systems 

Minkai Xu, Jiaqi Han, Aaron Lou, Jean Kossaifi, Arvind Ramanathan, Kamyar 
Azizzadenesheli, Jure Leskovec, Stefano Ermon, Anima Anandkumar
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▪ Can we use AI to effectively learn biophysically relevant features automatically? 
– DeepDriveMD: Accelerating biomolecular simulations with surrogate models 
– StreamAI-MD: Heterogeneous computing to accelerate simulation workflows 

▪ Can we use AI to effectively accelerate length- and time-scales accessible to MD 
simulations to bridge multi-modal experimental techniques?
– Intelligent Resolution: Integrating cryo-EM with X-ray crystallography using AI-

driven simulation workflows
– AA2CG2AA: Agentic AI to allow all-atom to coarse-grained to all-atom simulation 

campaigns

▪ Can we use AI to guide experimental campaigns for enabling biological systems 
design? 
– Experiments in loop for designing better enzymes by integrating multi-modal data
– Using AI to simulate actual labs  
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Continuum ⟺ all-atom simulations: using AI to guide 
and refine Cryo-electron microscopy data

A. Trifan, et al, Intelligent Resolution. IJHPCA (2021)

• Designed hierarchical AI methods to allow automated 
transitions between continuum and all-atom simulations 

• Atomistic simulations provide inputs to continuum 
simulations (forces in Fluctuating finite element analysis) 

• Simulations refine cryo-EM maps providing high-resolution 
ensembles of conformational transitions in multimer 
complexes  (SARS-CoV-2 replication transcription complex)



Multiscale modeling workflows switching between all-atom and coarse-
grained representations for CSF1R model - extracellular domain

CALVADOS3
A coarse-grained model for 

multi-domain proteins

OpenMM
All-atom model using 

Amber19

cg2all
Context switching with 

SE(3) Transformer

all2cg
Context switching with 

SE(3) Transformer

Force Matching
Improving CG forcefield 

with AA sims



Full-length membrane-bound CSF1R model

CALVADOS3
A coarse-grained model for 

multi-domain proteins

AlphaFold 
full-length model

CG Simulation
for accelerated exploration of 

interaction landscape

cluster conformations,
backmap to AA,

add explicit membrane

All-atom Simulation
for refining poses

Capturing protein-membrane interactions and complexation
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▪ Can we use AI to effectively learn biophysically relevant features automatically? 
– DeepDriveMD: Accelerating biomolecular simulations with surrogate models 
– StreamAI-MD: Heterogeneous computing to accelerate simulation workflows 

▪ Can we use AI to effectively accelerate length- and time-scales accessible to MD 
simulations to bridge multi-modal experimental techniques?
– Intelligent Resolution: Integrating cryo-EM with X-ray crystallography using AI-

driven simulation workflows
– AA2CG2AA: Agentic AI to allow all-atom to coarse-grained to all-atom simulation 

campaigns

▪ Can we use AI to guide experimental campaigns for enabling biological systems 
design? 
– Experiments in loop for designing better enzymes by integrating multi-modal data
– Using AI to simulate actual labs  



Using the agentic co-scientist to summarize results… 
Research cycle complete!
Generated 50 total hypotheses
Completed 30 tournament matches

Top 3 drug repurposing hypotheses:

1. A biologic therapy using a cell-penetrating antibody-peptide conjugate is proposed to target and inhibit the SET domain of WHSC1, leveraging unique structural features of WHSC1 for 
cancer therapy. (Elo rating: 1258.4)

 Content snippet: This hypothesis proposes the development of a biologic therapy comprising a cell-penetrating antibody conjugated to a peptide that specifically binds and inhibits the 
SET domain of WHSC1. The antibody...

2. The hypothesis proposes a nanobody-based biologic therapy targeting WHSC1 in cancer, utilizing nuclear localization signals and cell-penetrating peptides for specificity and efficient 
delivery. (Elo rating: 1244.4)

 Content snippet: This improved hypothesis proposes the development of a novel biologic therapy using engineered nanobodies fused to a nuclear localization signal (NLS), designed to 
selectively bind and inhibit the SET...

3. Develop a fusion protein therapy using DARPins and CPP to target WHSC1's SET domain with high specificity and efficient cellular/nuclear delivery. (Elo rating: 1231.3)
 Content snippet: This hypothesis proposes the development of a biologic therapy using a bifunctional fusion protein. This fus ion protein consists of a designed ankyrin repeat protein 

(DARPins) targeting the SET domain...

Research overview:
Title: Designing a Novel Biologic Therapy for Targeting WHSC1 in Cancer
Executive summary: This research overview outlines strategies for developing a biologic therapy targeting the SET domain of the WHSC1 protein, a histone methyltransferase implicated 
in various cancers. The focus is on designing a therapy that is specific, effective, and capable of nuclear penetration, leveraging structural biology techniques, cell-based assays, and in 
vivo models.



… providing novel (hopefully less hallucinated) insights 
across diverse data streams



Protein design needs “special” prompts to be effective but 
lacks clear, direct incorporation of design constraints

https://310.ai/
https://www.evolutionaryscale.ai/blog/esm3-release 

“I need a mostly hydrophobic 
protein with 7 transmembrane 
alpha-helices that can mediate 
cell signaling”  

+ Proteins
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Hypothesis: Multimodal language models can incorporate experimental 
observables to constrain the generation of protein sequences 
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Applications

• Enzyme redesign to improve catalytic 
activity with LLMs

• Antibody design with RF-Diffusion + 
feedback

Simulation/ Experiment data

• Preference Optimization as a strategy to 
balance novelty of sequences vs. design 
constraints (e.g., GC content, catalytic 
activity, binding affinities)

Latent Vector Representations 
(Embeddings) 

Multi-modal Models 

inferred 
relationships

?

?

?

Transformer 
Networks



Algorithmic innovation: Direct Preference Optimization strategy 
in two distinct modes aligns generative process w/ experimental data

24

• Incorporates feedback into the language model via preferences represented via user/ experimental data:
• Mode 1: Encode user preferences via a classifier trained on experimental fitness datasets
• Mode 2: Self-alignment where the language models “learns” the preferences via the generative process 

• DPO loss function formulated to preferentially weigh ‘preferred’ samples over ‘unpreferred’ samples to update model weights

• Scaling of DPO implemented for the reference and policy models using Megatron-Deepspeed framework:
• fused kernels from NVIDIA’s Megatron-LM with the ZeRO optimization and Pipeline parallelism of DeepSpeed
• FlashAttention-2 to improve throughput of training
• sequence lengths of 512 and 1024 as the target protein families

Direct Preference Optimization: Your Language Model is Secretly a Reward Model (Rafailov et al., 2023)

Preferred sequences

Unpreferred sequences

User generated/ Experimental

Reference 
Model

Policy  
Model

update weights
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MProt-DPO for Malate Dehydrogenase (MDH) improves predicted activity ~3.0 
fold increase with preliminary experimental confirmation

26

Reference 
sequencesFinetuned (no 

DPO) MDH
Finetuned (with 
DPO) MDH

• Despite lower sequence similarity, key motifs in the structures are conserved; average sequence lengths 300, 
median ~25 residues

• 48 variants validated in the laboratory of which 13 sequences exhibit enhanced MDH activity compared to 
wildtype designs (round 1)



Scaling Mprot-DPO on supercomputers  
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Alps

Leonardo

PDX 
CloudFrontier

Aurora
Intel Max 1550 GPU
6 GPUs/Node
HPE SS 11 (8 NICs)
200 GB/s

AMD MI 250X GPU
4 GPUs/Node
HPE SS 11 (4 NICs)
100 GB/s

NVIDIA H100 GPU
8 GPUs/Node
IB NDR (8 NICs)
400 GB/s

NVIDIA GH200 GPU
4 GPUs/Node
HPE SS 11 (4 NICs)
100 GB/s

NVIDIA A100 GPU
4 GPUs/Node
IB HDR (2 NICs)
50 GB/s

• Scale across five diverse supercomputing systems, including one 
cloud platform

• Systems include GPUs from Nvidia, AMD and Intel 

• System architected using Infiniband and HPE Slingshot

• Training leverages mixed precision wherein we use FP16 or BF16 
(primary compute) together with FP32 (gradients)
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System Nodes # of GPUs
Sustained 

EFLOPS 
(MP)

% Model Flop 
Utilization 

(MFU)

Peak 
EFLOPS 

(MP)
Aurora 3200 19200 4.11 44.5 5.57

Alps 2060 8240 2.92 41.7 3.16

Frontier 2048 8192 1.06 33.8 1.18

PDX 400 3200 1.29 48.4 1.39

… Achieves >1 Exaflops (MP) on each compute resource 



Summary

▪ AI techniques in the loop can help accelerate therapeutic discovery processes

▪ We can design novel types of therapeutics with generative models:
– peptides, antibodies, 
– proteins with non-standard amino-acids, 
– PNA (peptide nucleic acid) 

▪ Self-driving labs is at the intersection of AI + high performance computing + real-life interactions
– Transforming an entire generation of workforce 

▪ HPC environments are critical resources for generative design:
– a promptable engine for biologics design 
– inverse design is also a plausible strategy for targeting IDPs 
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