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Accelerating discovery using Al assistants

Study Hypothesize
Extraction, integration and Generative models automatically
reasoning with knowledge at scal propose new hypotheses that

expand the discovery space

Question Test
Tools help identify new Robotic labs automate
questions based on needs experimentation and bridge
and gaps in knowledge digital models and physical
testing
Report Assess
Machine representation of knowledge\/ !Dattern and gnomaly dgtection 's
leads to new hypotheses and integrated with simulation and
questions gxperimentation to extract new
insights

https://doi.org/10.1038/s41524-022-00765-z




Autonomous Discovery @Argonne

= The vision

— A system that starts with a high-level
description of a hypothesis and autonomously
carries out computational and experimental
workflows to confirm or reject that hypothesis

— Use of Alin robotics and simulations to close
the loop on planning, execution, and analysis
of experiments

= Builds on

— Al approaches to planning (multiple steps),
and integration of results, causality, etc.

— Machine learning/simulation to design and
predict properties and outcomes

— Automation of experimental protocols
(robotic steps and workflows)

— Active Learning or RL for selection of next
experimental targets, etc.

https://github.com/anl-sdl/

https://www.cs.uchicago.edu/~rorymb/




Agentic implementation of laboratory workflows

[ Experiment Overview

Experiment Liquid Task — Materials Summary Locations Summary
Run a plate transfer experiment. We 1.) None Material: Destination Plate Material: Destination Plate —
move plate from ot2bioalpha to hidex Pipette: p300_single_gen2, Mount: left Labware:
geraldine. Run a basic assay with corning_95_wellplate_360ul_flat -

assay name assay_name. Fixed in OT2 at Location: 1
Then, we move plate from hidex

geraldine to biometra3 and run
protocol 1. Return the plate back to
the ot2bioalpha to finish.

As a note, hidex lid is already open,
but biometra3 lid is closed

+-—————————— Confirm Your Experiment -———H—"-———————+

|
| Press [Enter] to confirm this experiment or ['c'] to cancel: |

A e AutoProtocol Update ———————+

|
| Round 1 of Workflow Generation - Coding
\ I

PLANNING Agent Output
'Transfer the plate from ot2bioalpha.deckl to hidexfgeraldlne.default‘J

[ ACTION AGENT @ — DONE @



Disordered proteins span over 30% of the human

proteome and are important drug targets

= Proteins without a stable tertiary structure:
— High flexibility
— Adaptable binding interfaces

= 65% of these proteins are involved in
diseases:
— Cancer
— Neurodegenerative
— Cardio-vascular
— Diabetes

= \We want to largely target the “undruggable”
genome as part of this project

®" This is not restricted to just human
genomes; we are looking at viral, bacterial,
fungal pathogens (for infectious diseases)
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Uversky, V., Oldfield, C., Dunker, K., (2008) Annu. Rev. Biophys., 37: 215-246
Liu, J., Faeder, J.R., Camacho, C.J., (2009) Proc. Natl. Acad. Sci. USA, 106 (47): 19189
Dyson, J.H., Wright, P.E., (2015) Nat. Rev. Mal. Cell Biol.,



Background: Biomolecular dynamics spans multiple

length- and time-scales...

Bond
vibrations

Helix/coil
transitions

Multivalent
interactions

Disorder-to-order
transitions

Side-chain
rotations/motions

Higher-order secondary
structural transitions

Liquid-liquid
phase separation

I I I I I I I
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Time (s)

Multiscale nature of IDP
structure and function

NMR

Solution scattering techniques (X-ray/ neutron)

Single-molecule Forster Resonance Energy Transfer (FRET)

X-ray-crystallography and Cryo-electron microscopy Cryo-TEM

A

~
Physiochemical conditions (pH,
temperature, etc.)

Presence/absence of chemical/
biological modulators (RNA, small
molecules, etc.)

Other biological mechanisms
(post translational modification,
protein aggregation, etc.)

NMR: probe dynamics of coupled
folding and binding processes
Solution scattering/ smFRET:
probe gross structural features of
complex phenomena across
timescales

X-ray/ Cryo-EM/ Cryo-TEM:
probe structural organization of
biological assemblies

( All-atom molecular dynamics (MD)

Ensemble methods and enhanced sampling methods

Coarse—grained MD and other sampling methods

Continuum methods, Multiscale modeling, Theory

I order events (phase separation)

A4
=
MD simulations: provide
mechanistic insights into coupled
folding and binding phenomena

Multiscale modeling and theory:
mechanistic insights into higher-
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Dimensionality reduction Quantifying conformational Adaptive simulations + Improving force field

Event detection

and clustering transitions automatic multiscaling parameters for simulations

0.4

—— Original FF

—— Opiimized FF
- Experiment

2 0.3 0.4 II: 5
. aAh
Bayesian inference to fit sparse
experimental observables

Y
ML and deep learning approaches

|
Al, probabilistic models, Bayesian inference

Current Opinion in Structural Biology




... current Al ecosystem of tools are not biophysically
aware

Shozeb Haider @shozeb_haider - May 9
However, the DNA is a mess.
AF3 pushes the strands up by 2 bp.

il 4.2K Fht

BioEmu: ~200 ms of simulation

DiffDock/NeuralPlexer: none of
them able to associate protein-
still limited

protein interactions or protein-
. . . Scalable emulation of protein equilibrium ensembles
ligand interactions accurately with generative deep learning

Sarah Lewis,et al, , Cecilia Clementi, Frank Noé
https://doi.org/10.1101/2024.12.05.62

AlphaFold3: Sometimes remarkable results
have interesting failure modes...

AlphaFold3: https://www.nature.com/articles/s41586-024-07487-w

training time, but applications are

DiffDock: https://arxiv.org/html/2402.18396v1

NeuralPlexer:
https://www.nature.com/articles/s42256-024-

00792-z




Outline

= Can we use Al to effectively learn biophysically relevant features automatically?
— DeepDriveMD: Accelerating biomolecular simulations with surrogate models
— StreamAl-MD: Heterogeneous computing to accelerate simulation workflows

= Can we use Al to effectively accelerate length- and time-scales accessible to MD
simulations to bridge multi-modal experimental techniques?
— Intelligent Resolution: Integrating cryo-EM with X-ray crystallography using Al-
driven simulation workflows
— AA2CG2AA: Agentic Al to allow all-atom to coarse-grained to all-atom simulation
campaigns

= Canwe use Al to guide experimental campaigns for enabling biological systems
design?
— Experiments in loop for designing better enzymes by integrating multi-modal data
— Using Al to simulate actual labs



Standard simulation approaches face significant data movement and
parallel analytics challenges

Need for interleaving analytics (Al/ML) + Simulations (HPC) Ensemble Toolkit Workflow
— Job scheduler C___ Pipeline >
) ’ Simulation
A [ Ssimulation(s) | ° Insituanalytics @@
g ) 2 ’ ® Red uced data Barrier [‘I’ni&au!hangﬂ
b%D [ Data storage (Disks) ] movement and other o _—Vow vamiig——_
2 ) 3 ’ overheads Yes
) \ 4 . o . . o Diata Collection
| Analytics N Online monitoring and @
- ) ’ feedback _
v Barrier (file exchange)
V|Suallzat|on Training
‘ ‘ @®.-®
 Large simulations generate > O(100 TB) of data . m=e
Barrier (file exchange)
* Humanly impossible to peek into “biologically” interesting events! '
. . . . Inference
* http://deepdrivemd.github.io A
@
* Ma, Leeg, et al. PARCO (2019) |

Lee, Ma, et al. Workshop on Deep Learning on Supercomputers, Supercomputing (2019) iterations = 10



Computational challenges

* Representation of contact maps as sparse matrices

» Parameters for training — O(1072?) = harder to train




Deep learning can identify reaction coordinates for
complex conformational transitions

How does the spike protein open to
fuse with human cells?

" Low-dimensional latent representation learned by
convolutional variational autoencoder

T Sztain* SH Ahn*,...LTC, R Amaro. Nat. Chem. (2021).
A Trifan, T Sztain, et al, LTC, A. Ramanathan, R. Amaro IJHPCA (2020, 2021)
A. Ramanathan, et al Current Opinion in Structural Biology (2019)

D. Bhowmik, et al, BMC Bioinformatics (2017)
software/notebooks: https://github.com/ramanathanlab/deepdrivemd




DeepDriveMD enables 4-fold acceleration of
sampling effectiveness for FSD-EY (B «a) folding

= g@blation

= adaptive-binning

wem | OF on-the-fly
LOF static
ground truth

ki g €Stimate

total simulation time (us)

Jointwork with Alexander Brace, Nick Frazee, Jeremy Leung, Lillian Chong (University of Pittsburgh)

Embedding states into the VAE latent
space and clustering with k-means keeps a
constant definition of the number of states
sampled enabling fair comparison
between simulations

The ML + RMSD strategy reaches 80%
sampling at least 4 fold faster than Anton-1
simulations

Integrating with weighted ensemble
techniques we can get access to kinetics

Note: Uncertainty from 10 trials is shown in light.red



Bridging ThetaGPU + CS-1 with Stream-AI-MD

/

GPUO

Outlier

thetagpuO1

\ 4

\

» CVAE Inference

Embeddings

Search

CPU
Outliers

\4

Restart Points
I/0

Write Positions

o

Read

Weights

-

- N
[ )
: thetagpu02 A
OpenMM run1
OpenMM run2
OpenMM run3
OpenMM run4
OpenMM runb
OpenMM run6
OpenMM run?7
OpenMM run8
» Read Write Frames /
Positions %

Transfer Frames (scp)

~

Training

Pl

Training
Service

A

Read
Frames

b\_—

Write
Weights

S

B

-

NFS

° 18|hrs

walltime (Stream-AI-MD) vs. 923

hrs (est. A100)

° ~50X speed-up (sampling folded states)

Transfer Weights (Globus)

13



Accelerating MD simulations with surrogate models
provides ~103° speedup for protein systems

Table 6. F-MSE on AdK equilibrium trajectory dataset. Block
Linear RF MPNN EGNN EGHN |EGNO EGHNO ---X-‘-.-.-

2.890 2.846 2.322 2735 2034|2231 1.801 \

Minkai Xu, Jiagi Han, Aaron Lou, Jean Kossaifi, Arvind Ramanathan, Kamyar
Azizzadenesheli, Jure Leskovec, Stefano Ermon, Anima Anandkumar



Outline

= Can we use Al to effectively learn biophysically relevant features automatically?
— DeepDriveMD: Accelerating biomolecular simulations with surrogate models
— StreamAl-MD: Heterogeneous computing to accelerate simulation workflows

= Can we use Al to effectively accelerate length- and time-scales accessible to MD
simulations to bridge multi-modal experimental techniques?
— Intelligent Resolution: Integrating cryo-EM with X-ray crystallography using Al-
driven simulation workflows
— AA2CG2AA: Agentic Al to allow all-atom to coarse-grained to all-atom simulation
campaigns

= Canwe use Al to guide experimental campaigns for enabling biological systems
design?
— Experiments in loop for designing better enzymes by integrating multi-modal data

— Using Al to simulate actual labs
15



Continuum < all-atom simulations: using Al to guide
and refine Cryo-electron microscopy data

All-atom Ensemble MD Simulations
(NAMD)

Cryo-EM maps

Protein Data
Bank

Initial best @@“ Atomistic (refined)  Novel conformational @@ Localized {8 N A 20 S 7,;@&;&;;;@;”;&.
guess Cryo-EM models states | fluctuation: “SEIRETACK e i §§1
A4 4 :

Global 11.20
conformation 10.72
al fluctuations

@
®

. Atomistically
correct sub-

10.25

* Designed hierarchical Al methods to allow automated
transitions between continuum and all-atom simulations

* Atomistic simulations provide inputs to continuum
simulations (forces in Fluctuating finite element analysis)

domain * Simulationsrefine cryo-EM maps providing high-resolution

orientations ensembles of conformational transitions in multimer

* Interface complexes (SARS-CoV-2 replication transcription complex)

Ensemble Continuum potentials Hierarchical Al Methods for
Simulations (FFEA) computational steering A.Trifan, et al, Intelligent Resolution. JHPCA (2021)

\4




Multiscale modeling workflows switching between all-atom and coarse-
grained representations for CSF1R model - extracellular domain

Force Matching
Improving CG forcefield
with AAsims

aIIZC%
Context switching with
SE(3) Transformer

CALVADOS3 AL oPenMM.
A coarse-grained model for -atommodet using
Amber19

multi-domain proteins
>
: ')

b

X

e d

=9
9 com ~
NN
NS

cgZall
Context switching with
SE(3) Transformer




Full-length membrane-bound CSF1R model

Capturing protein-membrane interactions and complexation

CALVADOS3
A coarse-grained model for
multi-domain proteins

CG Simulation

for accelerated exploration of

interaction landscape

All-atom Simulation
for refining poses

cluster conformations,
backmap to AA,
add explicit membrane



Outline

= Can we use Al to effectively learn biophysically relevant features automatically?
— DeepDriveMD: Accelerating biomolecular simulations with surrogate models
— StreamAl-MD: Heterogeneous computing to accelerate simulation workflows

= Can we use Al to effectively accelerate length- and time-scales accessible to MD
simulations to bridge multi-modal experimental techniques?
— Intelligent Resolution: Integrating cryo-EM with X-ray crystallography using Al-
driven simulation workflows
— AA2CG2AA: Agentic Al to allow all-atom to coarse-grained to all-atom simulation
campaigns

= Canwe use Al to guide experimental campaigns for enabling biological systems
design?
— Experiments in loop for designing better enzymes by integrating multi-modal data

— Using Al to simulate actual labs
19



Using the agentic co-scientist to summarize results...

Research cycle complete!
Generated 50 total hypotheses
Completed 30 tournament matches

Top 3 drug repurposing hypotheses:

1. A biologic therapy using a cell-penetrating antibody-peptide conjugate is proposed to target and inhibit the SET domain of WHSC1, leveraging unique structural features of WHSC1 for
cancer therapy. (Elo rating: 1258.4)

Content snippet: This hypothesis proposes the development of a biologic therapy comprising a cell-penetrating antibody conjugated to a peptide that specifically binds and inhibits the
SET domain of WHSC1. The antibody...

2. The hypothesis proposes a nanobody-based biologic therapy targeting WHSC1 in cancer, utilizing nuclear localization signals and cell-penetrating peptides for specificity and efficient
delivery. (Elo rating: 1244.4)

Content snippet: This improved hypothesis proposes the development of a novel biologic therapy using engineered nanobodies fused to a nuclear localization signal (NLS), designed to
selectively bind and inhibit the SET...

3. Develop a fusion protein therapy using DARPins and CPP to target WHSC1's SET domain with high specificity and efficient cellular/nuclear delivery. (Elo rating: 1231.3)

Content snippet: This hypothesis proposes the development of a biologic therapy using a bifunctional fusion protein. This fusion protein consists of a designed ankyrin repeat protein
(DARPins) targeting the SET domain...

Research overview:
Title: Designing a Novel Biologic Therapy for Targeting WHSC1 in Cancer
Executive summary: This research overview outlines strategies for developing a biologic therapy targeting the SET domain of the WHSC1 protein, a histone methyltransferase implicated

in various cancers. The focus is on designing a therapy that is specific, effective, and capable of nuclear penetration, leveraging structural biology techniques, cell-based assays, and in
vivo models.



... providing novel (hopefully less hallucinated) insights

across diverse data streams

B s ‘ _
eoe M = 83 T “ Ad 2= BB I @~ & B h Q
q/ - distlilm distilm /'w P matn !1

vh Today A 4, 2025 at 1:51PM
chat.py cli.py distributed_embedding.py distributed_generation.py distributed_tokenization.py embed generate

ES Notes Tom RAG Questions (Cancer)

qa/ distlim distllm /© P main !11 n chat.py —config ../examples/chat/vllm_cancer_chat_config.yaml @ Recently Deleted Tom RAG Questions (Cancer)

*low_cpu_mem_usage” was None, now default to True since model is quantized. 1:51PM What is the role of the gene | What is the role of the gene WRN in cancer signaling pathways?
Loading FAISS index from /rbstor/ac.ogokdemir/tom_rag/faiss_indices/cancer

You: U Does the context that you are provided with discuss any residues

involved in physical interactions that TET2 participates in, in order to
perform its biological function?

What are the key TET2 mutations that prevent it from functioning
properly. Provide specific information at the atomic level precision.
Highlight any studies in your context that might be mentioning residues,
or motifs involved in those mutations.



Protein design needs “special” prompts to be effective but
lacks clear, direct incorporation of desigh constraints

“I need a mostly hydrophobic

protein with 7 transmembrane
alpha-helices that can mediate ) q —>
cell signaling”

+ Proteins

https://310.ai/

https://www.evolutionar le.ai/blog/esm3-rel

22



Hypothesis: Multimodal language models can incorporate experimental
observables to constrain the generation of protein sequences

— Multi-modal Models
— | kX,

constraints (e.g., GC content, catalytic

E_E = inferred U
____relationships L N\
Scientific I A L F
. ?/’ 4 &g ¢ a10 A“ |
literature ) P 1IN
{ 11 iy o
’ T ey
VZZ2/ amm/ L
(.ll‘> W * Preference Optimization as a strategy to
I
...' ? balance novelty of sequences vs. design
] ] A
]
!

5 & 8 8
GC content

Databases ——> —> . - .
: 2 activity, binding affinities)
=% it
S— HHA wan/
ull Transformer =%’
Experimental Networks . Enz.yl.'ne rgde3|gn to improve catalytic
data — activity with LLMs
* Antibody design with RF-Diffusion +
Latent Vector Representations feedback
@ (Embeddings)
WO
Simulations — 23




Algorithmic innovation: Direct Preference Optimization strategy
In two distinct modes aligns generative process w/ experimental data

User generated/ Experimental

: R __ chosen score
ererred sequence reference ™ Yejected score :
loss = —log(ca (. log( Bpoticy )
Ryeference
R chosen score T
preferred sequence policy  Yejected score
\ ) update weights

Incorporates feedback into the language modelvia preferences represented via user/ experimental data:
* Mode 1: Encode user preferences via a classifier trained on experimental fithness datasets

Mode 2: Self-alignment where the language models “learns” the preferences via the generative process

DPO loss function formulated to preferentially weigh ‘preferred’ samples over ‘unpreferred’ samples to update model weights

Scaling of DPO implemented for the reference and policy models using Megatron-Deepspeed framework:

* fused kernels from NVIDIA’s Megatron-LM with the ZeRO optimization and Pipeline parallelism of DeepSpeed
* FlashAttention-2 to improve throughput of training

* sequence lengths of 512 and 1024 as the target protein families

Direct Preference Optimization: Your Language Model is Secretly a Rewa2r4d Model (Rafailov et al., 2023) 2



Where is Attention gOll’lg{7 Head Pooling =~ Avg Layer Pooling  None v Select Layer All

<Ibegin_of_textl> A sequence is known by the IDAOA 140D2T1_ZIKV _M 207 .
Its Property Name =< Deep Mut ational Sc anning ( D MS ) score > is valued at Property
Val =<1 .22 > and shows this protein is Fitness =< fit >. It consists of 286 residues .
The molecular structure has been determined to weigh 315 00 . 86 Da . Characteristics
of this protein include an aromatic ity value of 6 . 29 and an instability index calculated
at 39 .8, hint ing at its stable nature . The calculation of its is oe lectric point results in
a value of 5 .84 , while flexibility assessments reveal an average score of 1 .0 witha
standard deviation measuring 0 . 000 692 . Moreover , the protein exhibits a grand
average of hy drop ath icity (GRAV Y ) score of - 0 . 1 . Among its amino acid
makeup , the predominant residues are Le uc ine , Alan ine , and Th reon ine , which
constitute 36 . 36 % of its composition . The sequence is <SSEQ>M SIQHFRV A
LIPFFAAFCLPVFAHPETLVKVKDAETQLGARVGYIELD
L NSGKILESFRPEERFPMMSTFKVLLCGAVLSRVDAGQE
Q LGRRIHYSQNDLVEYSPVTEKHLTDGMTVRELCSAAIT
M SDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRWE
PELNEAIPNDERDTTMPAAMATTLRKLLTGELLTLASRQ
QLIDWMEADKVAGPLLRSALPAGWFIADKSGAGERGSR
G ITAALGPDGKPSRIVVIYTTGSQATMDERNRQIAEIGAS
L IKHW <ESEQ>

Layer 13 Layer 14

Layer 15



MProt-DPO for Malate Dehydrogenase (MDH) improves predicted activity ~3.0
fold increase with preliminary experimental confirmation

SMDH_1jChains/1-333 1 ----- s EPNEVEV TGAAGO |1 A L IGNEs¥rBkD-------- QP | I[LVLL ITFHMG‘."L G‘u’L LQD{:ALPLL 64
SEQ1_gen/1-313 lo-ommoom oo o= - - M _"Lii‘_tﬁ HEE_A_TE&UEL!@' TASEVVLIDI - - K G‘“t AQLLG 54
I MEVLSKF _EELI\F___E_’H&HNH-_-_EM VIGAG H\F§5C“ﬁQLLﬁL LV - NVVL DV - - G_‘IMRE MGPAAE 72

SMDH_1jChains/1-333 65 KIV- - MAMDKBE | AFK D LFVA T LVE s M Bl o GM LLKA wchK CoGAALDEWAK KBV KV IVVGHPANTNCILT 138
SEQ1_gen/1-313 55 FDOTVVKGYTNDY SATAGSDVV I ITSGLPRKEPGMT LIGY a_ﬁ_l_'-.j_gly_n_m_q_l_l: PNAIL-LVVVSNPM- - - DEM 126
73 ADCFLVGHE- sD¥GP LVNENVV I LLARG LK vMEGERCL | DOIDVRVDONVOR NAMEIAD -V - LLVAGTKAAAVTEK 146

SMDH_1/Chains/1-333 139 & K——SAPSIP‘ NFEC - LTRL BollaL @G- - - - - VTED '-.frm'-.f ------------- | WG~ ToMP DV 194
SEQ1_gen/1-313 127 A Irggl__g;_l_ vIGMGGAL FLSO _—_—_—_—_:flj:_M_FLM GFV I GGH------------GOIM-1PMT 185
147 AL LDMARL - - A------R FA"-"E.D_TF_L_T_&EI_MD_E_H_P_MS_E R¥ESGALVR IVDVLVDEWETHAAE-IPLCE 214
SMDH_1jChains/1-333 195F LQA---U--Gv‘vKD LKGEFI THWOORGAAVTKER KD s sAMsEAKE Ig‘u'IDIWFGTPEGEF‘.FS 267
SEQ1 gens1-313 186 GMPVsTMI SHEELEEVAA ‘."{i(_i& GLLGT- - BAWMAPGAAAASVADSVINDOKEM- - - - IPESANLE 256
215 _D_A_L&EEELI_E-EML‘_H’; L--0 lsr_f_- VVNVPGM- - ROWGADAN - - - - - - - - - - - -------- - -BCAFFV@ 266

SMDH _1jChains/1-233 263 MﬂllS.ﬁN G\FPDDLLYSFPVTIKDKTWH|"I-I"EGLF‘|N FSRE DL..FLK LA.EE .FL————FEFLSSA 333
SEQ1_gen/1-313 257 GIEMIGY ND | BlI GVP - B 16- - - - - - - KNGIEK] ‘_u’_E_L_hI_I_S_ ALFAAS E_A_.‘u_’& A_l_L_rg ENNVL- - - 313
267 SDPAREMTE ‘-"DAE"H’.:'::_'_'_:::::_'_'_'_:::::_'_'_'_:: - P---------------—-- 293

=0.4 =0.2 0.0 0.2 0.4

Reaction Coordinate (4)

* Despite lower sequence similarity, key motifs in the structures are conserved; average sequence lengths 300,

median ~25 residues
* 48 variants validated in the laboratory of which 13 sequences exhibit enhanced MDH activity compared to

wildtype designs (round 1) 26



Scaling Mprot-DPO on supercomputers

NVIDIA GH200 GPU
4 GPUs/Node

* Scale across five d|verse supercomputlng systems, including one
cloud platform

Intel

6 GP| » Systems include GPUs from Nvidia, AMD and Intel
HPE

200 C
* System architected using Infiniband and HPE Slingshot

* Training leverages mixed precision wherein we use FP16 or BF16
(primary compute) together with FP32 (gradients)

AT T™TZoO0A Or U
4 GPUs/Node — 8 GPUs/Node
HPE SS 11 (4 NICs) F‘F@nUGF e IB NDR (8 NICs)
100 GB/s J = 400 GB/s

INVIDTRTITTOUOTr O




3.5B Mode| 7B Model

... Achieveés >1 Exaflops ( on eéc:h,'i?s?ompute resour

I @ Aurora Leonardo
Leonardo - w  Frontier

(tokens [ 5)

—
1T
oy
W
c
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e
o
-+

Sustained | % Model Flop Peak

EFLOPS Utilization EFLOPS
(MP) (MFU) (MP)
Aurora 3200 19200 4.11 44.5 5.57
Alps 2060 8240 2.92 41.7 3.16
Frontier 2048 8192 1.06 33.8 1.18

3200 1.29 48.4 1.39

Exa
\

PDX 400

100 25 1024 2048 3200
Modes

0.1-

" 100 256 1024 2048
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Summary

Al techniques in the loop can help accelerate therapeutic discovery processes

We can design novel types of therapeutics with generative models:
— peptides, antibodies,
— proteins with non-standard amino-acids,
— PNA (peptide nucleic acid)

Self-driving labs is at the intersection of Al + high performance computing + real-life interactions
— Transforming an entire generation of workforce

HPC environments are critical resources for generative design:
— a promptable engine for biologics design
— inverse designis also a plausible strategy for targeting IDPs

29
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