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Al'lS DISRUPTING COMPUTING IN MANY WAYS
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Figure ES-1. Total U.S. data center electricity use from 2014 through 2028.
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OVERARCHING FINDING: The combination of increasing demands for computing

with the technology and market challenges in HPC requires an intentional and thorough

reevaluation of ASC’s approach to algorithms, software development, system design,
computing platform acquisition, and workforce development. Business-as-usual will not
be adequate.

The approach used to reach petascale and now exascale capabilities is unlikely
to be sufficient for the next two decades. Instead, NNSA will need to reevaluate how its
mission problems, not limited to physics simulations, are best solved through advanced
computing, and rethink what type of models, algorithms, and data analysis techniques
are suited to each problem; what computing capabilities will be needed; and how it can
best acquire those capabilities.

Owing to a confluence of technology, marketplace, and workforce challenges,
NNSA’s ASC program is at a critical crossroads. The program has for decades delivered
impressive and state-of-the-art predictive simulation capabilities using in-house exper-
tise in applied mathematics, computer science, and the physical sciences, along with
research and development (R&D) investments in the computer vendor community.
However, the current deployment model is not likely to be sufficient for future NNSA
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In-memory computation

Event-driven communication and
computation

Asynchronous
Learning and adaptivity

Ubiquitous stochasticity
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PART T

WHAT IS NEUROMORPHIC COMPUTING?



THERE IS NOT A SINGLE ROADMAP FOR NEUROMORPHIC
COMPUTING

J Neuromorphic research exists across the technology stack
J New post-CMOS materials (memristors, ECRAM, MT]Js, quantum materials, ...)
1 Non-digital devices (analog, stochastic, optical, ...)
) Bio-inspired circuits (reconfigurable, dendrites, learning, ...)
A

Neuromorphic architectures (spiking, event-driven sensors, ANN
accelerators, ...)

U

Software paradigms (compilers, intermediate representations, ...)

U

Neuromorphic algorithms

When is it ready for prime time?
What is needed to get there?



WHEN WILL NEUROMORPHIC COMPUTING BE A REALITY?
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Quantum Computing
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NEUROMORPHIC COMPUTING HAS PROMISE AT DIFFERENT
TIME SCALES

Quantum Computing

Neuromorphic

Neuromorphic

Well-described Well-understood but i
| . Exotic
materials 'Y not conventional )
i - ; ) materials
(i.e., silicon) 5 materials .

Today’s Some scaling risk Major scaling
fabrication but fabrication and fabrication
technology | possible challenges

Demonstrated Prototyped Theoretical
applications applications applications
Stable programming Developing Uncertain
model . programming model . programming model

i i I

Now 5-10 years 10-20 years




TODAY'S DIGITAL NEUROMORPHIC SYSTEMS ARE APPROACHING
BRAIN-SCALE

Review

Neuromorphiccomputing atscale

) Systems like Intel’s Loihi 2 and
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NOT QUITE A MOLE OF NEURONS

... BUT MORE NEURONS THAN A MOLE



WHAT IS NEUROMORPHIC COMPUTING TODAY?

* In digital silicon (CMOS) technology

= Over 1 billion neuron system at Sandia

— Roughly the number in a parrot or small primate brain

= Neurons are “simulated” in an efficient way

= Generally a leaky integrate-and-fire model
« Analog systems

= Wide range of technologies, but far smaller l
= Emulate the brain’s biophysics in different : —

materials

: : Left to right: William Chapman, Brad Theilman,
= Wide range of neural dynamics emulated Craig Vineyard, Mark Plagge
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Sandia Deploys SpiNNaker2 Neuromorphic System

from SpiNNcloud
June 5, 2025

DRESDEN, Germany, June 5, 2025 — SpiNNcloud today announced that
Sandia National Laboratories has deployed a SpiNNaker2-based
neuromorphic computing system to explore energy-efficient architectures for
artificial intelligence and national security applications.

Developed by SpiNNcloud and
based on research led by Steve
Furber, designer of the original
ARM architecture, SpiNMNaker2
uses a large number of low-
power processors to simulate
spiking neural networks and
support Al workloads.

g

Left to right: William Chapman, Brad Theilman,
Craig Vineyard, Mark Plagge

The deployment supports

Sandia’s broader efforts to
investigate alternative computing
architectures that reduce enerq

National Labs. Photo credit: Craig Fritz,
Sandia National Labs.




SPIKING NEUROMORPHIC TODAY:
SCALABLE AND PROGRAMMABLE IN-MEMORY COMPUTE

R Neural Chip

) . ~10" - 102 cores
Wo.x -10% neurons
b, & -/ : Ne@— : Ne@— : Ne@—

Computational Primitives:
Spiking Neurons (vertices/nodes)
Synapses (connections/edges)

Programmable as arbitrary graphs
« Edges: Directed and weighted
» Nodes: Threshold gate logic + time

* Artificial neural networks are a fifizmzrmanii EVE 5T
special case
- Programmability, theoretical, e T e e e
ana|ysi5, and software are open SgggsEgE gEsgEigEE g EEE s

research questions 13



SPIKING NEUROMORPHIC TODAY: STILL FAR FROM THE ACTUAL

BRAIN

Computational Primitives:

Spiking Neurons (vertices/nodes)
Synapses (connections/edges)

Programmable as arbitrary graphs

« Edges: Directed and weighted

» Nodes: Threshold gate logic + time

 Artificial neural networks are a
special case

- Programmability, theoretical,
analysis, and software are open
research questions

Today's neuromorphic systems are far from the

brain in terms of complexity and scale
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PART 2:

WHAT MAKES NEURAL COMPUTING
DIFFERENT?



NEUROMORPHIC IS LIKELY SIMILAR TO GPUS IN DEGREE OF
SPECIALIZATION

Truly General Purpose Specialized General Purpose Application Specific

GPU

Performance

Performance
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CLAIM: THE MAJOR CHALLENGE TO NEUROMORPHIC
COMPUTING TODAY IS THE ALGORITHM IMPACT

|dentifying neuromorphic advantages today will

[ Communicate the fundamental value proposition
of neuromorphic hardware

Performance

1 Determine how neuromorphic computing fits into
the broader ecosystem (GPUs, accelerators, etc)

O Clarify what aspects of today’s neuromorphic
architectures need to be improved

[ Justify cost of moving to new non-CMQOS materials

Performance

Hypothesis: Identifying classes of computation that
are preferentially accelerated by neuromorphic can
vt sk perhaps do for those paradigms what GPUs did for Al




UNDERSTANDING NEUROMORPHIC COMPLEXITY
T

Serial run time (Total algorithm work)
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IN-MEMORY COMPUTING FUNDAMENTALLY CHANGES SCALING
I

Serial run time (Total algorithm work)

A
T, T, |

Conventional programs and data exist in memory

7

a

RAM

Neuromorphic programs must be fully realized in
hardware

!

Minimum time (Minimal computational depth)

o0



THE SIZE OF ALGORITHM DICTATES TIME AND SPACE OF
NEUROMORPHIC IMPLEMENTATION

T
1
Serial run time (Total algorithm work)

A
a T:b T:f \\

\ }
!

Minimum time (Minimal computational depth)

7
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Brent's Theorem: for p processors, run time T, is
bounded by graph depth T,

I I
max| T, —|<T, < —+ Ty

p p
time space
Tp Cp
I.
P

For conventional systems, time and space can be
directly traded off
For NMC (and all in memory compute), there is no tradeoff



IMPLICATION: NEUROMORPHIC CAN BE FAST...
BUT YOU NEED A LOT OF NEURONS

T7
Serial run time (Total algorithm work) TABLE II
A TIME, SPACE, AND ENERGY SCALING OF NEUROMORPHIC AND
{ \\ CONVENTIONAL SYSTEMS
7_-3 T_b T_f Time (T") Space (S)
: : : Conventional
ldeal O (%) O(p)
CPU (Realized) O(T1) O(1)
: T
GPU (Realized) O (57—t ) O(p)
Neuromorphic
L Ideal O(Ting) o(T)
\ } Realized O(Ncore z-'lnf) O(Tl /NCO?"G)
Minimum time (Minimal computational depth) arXiv preprint arXiv:2507.17886

o0



MEMORY ACCESS DOMINATES CONVENTIONAL ENERGY

Energy =
Energy(operations) + Energy(communication)
S S
o o Conventional
—> — Sp1 = fp(Sq,1) « Energy costs (at least within processors) are largely
communication to and from memory

« Because processors are shared, conventional
Sa1 , algorithms must continually communicate algorithm
OA states to and from memory.
« Memory updates are largely state-independent, so

energy costs are relatively independent of initial and
end states

Conventional energy scales with total work



NEUROMORPHIC ENERGY DOES NOT SCALE THE SAME WAY
T

Serial run time (Total algorithm work)

A
T, T, |

7

a

!

Minimum time (Minimal computational depth)

o0

TABLE II
TIME, SPACE, AND ENERGY SCALING OF NEUROMORPHIC AND
CONVENTIONAL SYSTEMS

Time (T") Space (S) Energy (F)

Conventional

ldeal O (%) O(p) O(T})
CPU (Realized) O(T1) O(1) O(Ty)

. Ty

GPU (Realized) O (pxpemcimy) O(p) O(T})
Neuromorphic

Ideal O(Ting) o(T)

Rea]ized O(Ncorez-'inf) O(Tl /Ncore)

arXiv preprint arXiv:2507.17886



WHAT DOES EVENT-DRIVEN IMPLY?

Because processors are shared, conventional Neurons are event-driven, which means their state is

algorithms must continually communicate only updated if necessary.

algorithm states to and from memory. : —
5 y Neural algorithm communication should focus on

This is why energy cost is relatively how these states should be updated

independent of what initial and end states are.
4S,

Sa1 S 1 A4S,
a— — —>  Sp1 = fp(Sq) a_ —> — Sp,1 = fb(5p,0,454)
S
s, | b,1
° A AS 7. Sb,OC

AG, = O(AS,,)




ENERGY OF NEUROMORPHIC SCALES WITH CHANGE OF STATE

Total algorithm work Energy =
A Energy(operations) + Energy(communication)
{ T T T \\ Conventional
Ea b f « Energy costs are largely communication to and from
memory

« Memory updates are largely state-independent
Conventional energy scales with total work

Neuromorphic
» Energy costs are largely communication between
compute elements
« Communication is event-driven. No energy
expended if there is no change
Neuromorphic energy scales with the change of
state across computational graph
« Upper bound is still total work
« Lower bound can be really low...




ENERGY OF NEUROMORPHIC SCALES WITH CHANGE OF STATE

T7
Serial run time (Total algorithm work) TABLE II
A TIME, SPACE, AND ENERGY SCALING OF NEUROMORPHIC AND
{ \\ CONVENTIONAL SYSTEMS
7_-3 T_b T_f Time (T") Space (S) Energy (F)
: : : Conventional
ldeal O (%) O(p) O(T})
CPU (Realized) O(Th) O(1) O(T)
: T
GPU (Realized) O (pxpem%cimy ) O(p) O(T})
Neuromorphic I’ —-—===
Ideal O(Ting) O(T1) 1 O(AG) 1
) [ G !
\ } Rea]ized O(Ncorez-'inf) O(Tl /Ncore) O(AG)
Minimum time (Minimal computational depth) arXiv preprint arXiv:2507.17886
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WHAT MAKES FOR A LOW AG?

As?'

AG,= O(4S,)
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PART 3:

HOW DOES NEUROMORPHIC IMPACT
REAL COMPUTING APPLICATIONS?
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CAN WE REFORMULATE MONTE CARLO FOR NEUROMORPHIC?

Initial State dxi/dt = f(x;, X, ) Final State

K particles K location-dependent updates

U U
,X,...>+

T T T
xit+1)|=f ([xi(t) xi(t)]
l l

l e _ o 090 %o

dm.:
" g = 9K, )

M locations M location-specific updates

U U <A

T T - \
[mi(t‘l'l) =g;(X,) + mi(t)] _ —
) )




USE NEURONS TO REPRESENT STATE SPACE OF MONTE CARLO
AND USE SPIKES TO REPRESENT PARTICLES

Spikes from input nodes
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NEUROMORPHIC COMPUTING ADVANTAGE APPEARS TO BE WHEN AN
ALGORITHM CAN SPLIT THE TASK ACROSS COMPUTATIONAL GRAPH
WITH SPARSE COMMUNICATION




WE CAN IDENTIFY ANEUROMORPHIC ADVANTAGE FOR SIMULATING
RANDOM WALKS
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WHAT PDES CAN NEURAL RANDOM WALKS ADDRESS?

Class of Partial Integro-Differential Equations:
0 2

0x;0x;

9, 1 d
all(t; x) = EZ(aaT)i,j (t, x) ’Ll,(t, x) + z bi (t’ .X') a_xiu(t’ x)
i,j L

+A(t, %) j (u(t,x + h(t, x,9)) — u(t, %)) b (g; t, ¥)dg
+c(t, X)ult,x) + f(t,x), x€R%te0, 0).

Stochastic Process: NMC Hardware Simulates This Stochastic
Process

dX(t) = b(t, X())dt + a(t, X(t))dW () + h(t, X(t), ¢)dP(t; Q, X (1))

Solution to initial value problem (u(0,x)=g(x)): Monte Carlo Approximates This Expectation

u(t,x) =E [g(X(t)) exp (jotc(s,X(s))dS> + jotf(s,X(s)) exp (LSC({’,X(f))d{’> ds| X(0) = x].

Smith et al., Nature Electronics 2022 34
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NEUROMORPHIC FINITE ELEMENT METHODS?
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Poisson Sparse

Equation Linear System
2 % - 7
Viu=f soretization AZ = b Neuromorphic virtues:
ro| « Locally dense, globally sparse connectivity
Z\ Time

spie” %.50luﬁon - Scalable: neighbors ~ O(1)

« Sparse spiking activity

Fj " - Solution
N4

4 Time
Spike
Readout | X 7

Theilman and Aimone, in press 2025



RMS Error
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NEUROFEM PROVIDES SOLVER-QUALITY SOLUTIONS
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NEUROFEM IS SIMILAR IN SPEED TO GMRES AND CONJUGATE
GRADIENT

Neuromorphic solution is general
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scales, but can only be used for
symmetric matrices

Theilman and Aimone, in press 2025



NEUROFEM SHOWS COMPELLING STRONG AND WEAK SCALING
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LOW-POWER SCIENTIFIC COMPUTING ON NEUROMORPHIC

Node
Neuron

Neuromorphic

Neuromorphic

hardware can : hardware can s

efficiently solve 2. efficiently solve 5 1
stochastic finite element z

Monte Carlo ha method

simulations/ ' \ simulations

2
Y @
&7

Spiking Network Ground Truth

Severa et al., [CNN 2018

Smith et al., ICONS 2020
Aimone et al., ICRC 2021 Theilman and Aimone, in press 2025

Smith et al., Nature Electronics, 2( ot .
Both probabilistic and sparse methods
are emerging frontiers in Al algorithms!




WE NEED MOD SIM TO DETERMINE HOW NEUROMORPHIC FITS
INTO FUTURE HPC SYSTEMS

* Neuromorphic Computing offers distinct
advantages complementary to existing
Homogenous Heterogeneous
(Compressible (Incompressible accelerators and processors

Compute Graph) Compute Graph)

Application Complexity

- Effectively free from an energy and power
perspective when suitably used

Single-thread

Multi-thread

MPIl-based

Stored Program
(Von Neumann)

* Back to basics - this only makes sense if
I algorithms are co-designed to leverage
neuromorphic neu romorphlc adva ntages

Architecture Approach

Non-stored Program
(Non-Von Neumann)

A path to energy-efficient Al?



THANK YOU!

@

Craig M Vineyard, Suma G Cardwell, Corinne M Teeter, William
Severa, ) Darby Smith, Felix Wang, Fred Rothganger, Michael
Krygier, Cale Crowder, Bradley H Theilman, William Chapman,
Ryan Dellana, Mark Plagge, Efrain Gonzalez, Srideep Musuvathy

Any questions to jbaimon@sandia.gov

Neural Exploration & Research Lab
COGNITIVE & EMERGING COMPUTING

Aaron Hill, Shashank Misra, Yang Ho, Brady Taylor, Chris
Allemang, Rich Lehoucq, Brian Franke, Ojas Parekh

€/ SOUTH FLORIDA

UCSan Diego
%OAK RIDGE

National Laboratory

UTSA.

_ 9,‘;\ \
R v oeeaxvaNTor | Office of  NDRD ey e @ Sandia P
. ENERGY Science Laboratories AsSC »



	Is Neuromorphic computing Ready for Prime Time?
	AI is disrupting computing in many ways
	Slide Number 3
	Slide Number 4
	Part 1:��What is Neuromorphic Computing?
	There is not a single roadmap for neuromorphic computing 
	When will neuromorphic computing be a reality?
	Neuromorphic computing has promise at different time scales
	Today’s digital neuromorphic systems are approaching brain-scale
	Not quite a Mole of neurons
	What is neuromorphic computing today?
	What is neuromorphic computing today?
	Spiking neuromorphic today: �Scalable and Programmable In-Memory Compute
	Spiking neuromorphic today: still far from the actual brain
	Part 2:��What makes Neural Computing Different?
	Neuromorphic is likely similar to GPUs in degree of specialization
	Claim: the major challenge to neuromorphic computing today is the algorithm impact
	Understanding Neuromorphic Complexity
	In-memory Computing fundamentally Changes Scaling
	The Size of Algorithm dictates Time and Space of Neuromorphic Implementation
	Implication: Neuromorphic can be fast… �                                               but You need a lot of neurons
	Memory Access dominates Conventional Energy
	Neuromorphic Energy does not scale the same way
	What does Event-driven Imply?
	Energy of neuromorphic scales with change of State
	Energy of neuromorphic scales with change of State
	What makes for a low ∆G?
	Part 3:��How does Neuromorphic Impact Real Computing Applications?
	Slide Number 29
	Can we reformulate Monte Carlo for Neuromorphic?
	Use neurons to represent state space of Monte Carlo and use spikes to represent particles
	Neuromorphic computing advantage appears to be when an algorithm can split the task across computational graph with sparse communication
	We can identify a neuromorphic advantage for simulating random walks 
	What PDEs can Neural Random Walks Address?
	Slide Number 35
	Can we tackle FEM with probabilistic neural hardware?
	Slide Number 37
	Slide Number 38
	NeuroFEM ProviDes Solver-Quality SOlutionS
	NeuroFEM is similar in speed to GMRES and Conjugate Gradient
	NeuroFEM shows compelling strong and weak scaling
	Low-Power Scientific Computing on Neuromorphic
	We need Mod Sim to determine how Neuromorphic Fits into Future HPC Systems
	Thank You!



