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AI IS DISRUPTING COMPUTING IN MANY WAYS



In-memory computation

Event-driven communication and 
computation

Asynchronous

Learning and adaptivity

Ubiquitous stochasticity

…



Why you would want an architecture with brain-like activity to solve problems 
such as finite element simulations?



PART 1:

WHAT IS NEUROMORPHIC COMPUTING?



THERE IS NOT A SINGLE ROADMAP FOR NEUROMORPHIC 
COMPUTING 

 Neuromorphic research exists across the technology stack 

 New post-CMOS materials (memristors, ECRAM, MTJs, quantum materials, …)

 Non-digital devices (analog, stochastic, optical, …)

 Bio-inspired circuits (reconfigurable, dendrites, learning, …)

 Neuromorphic architectures (spiking, event-driven sensors, ANN 
accelerators, …)

 Software paradigms (compilers, intermediate representations, …)

 Neuromorphic algorithms

When is it ready for prime time?
What is needed to get there?



WHEN WILL NEUROMORPHIC COMPUTING BE A REALITY?

Now 10-20 years5-10 years

Today’s 
fabrication 
technology

Demonstrated 
Applications

Stable 
programming 

model

Major scaling and 
fabrication 
challenges

Theoretical 
Applications

Uncertain
 programming 

model

Well described 
materials 

(i.e., silicon)

Exotic 
materials 

Well-understood but 
not conventional 

materials 

Some scaling risk 
but fabrication 

possible
Prototyped 
Applications
Developing 

programming model

Quantum ComputingGPUs Dataflow



NEUROMORPHIC COMPUTING HAS PROMISE AT DIFFERENT 
TIME SCALES

Now 10-20 years5-10 years

Today’s 
fabrication 
technology

Demonstrated 
applications

Stable programming 
model

Major scaling 
and fabrication 

challenges
Theoretical 

applications

Uncertain
 programming model

Well-described 
materials 

(i.e., silicon)

Exotic 
materials

Well-understood but 
not conventional 

materials 
Some scaling risk 

but fabrication 
possible

Prototyped 
applications

Developing 
programming model

Quantum ComputingGPUs Dataflow

Neuromorphic Neuromorphic Neuromorphic



TODAY’S DIGITAL NEUROMORPHIC SYSTEMS ARE APPROACHING 
BRAIN-SCALE

 Systems like Intel’s Loihi 2 and 
SpiNNCloud’s SpiNNaker 2 can 
surpass 1 billion neurons

 Individual chips are ~1 million 
neurons and ~1 Watt

 Fully CMOS (little fabrication risk)

 Digital or Digital + Analog hybrid

 Future devices and novel materials 
can amplify potential impact

Kudithipudi et al., Nature 2025



NOT QUITE A MOLE OF NEURONS

… BUT MORE NEURONS THAN A MOLE



WHAT IS NEUROMORPHIC COMPUTING TODAY?

• In digital silicon (CMOS) technology

 Over 1 billion neuron system at Sandia 
⎼ Roughly the number in a parrot or small primate brain

 Neurons are “simulated” in an efficient way

 Generally a leaky integrate-and-fire model

• Analog systems

 Wide range of technologies, but far smaller 

 Emulate the brain’s biophysics in different 
materials

 Wide range of neural dynamics emulated
Left to right: William Chapman, Brad Theilman, 

Craig Vineyard, Mark Plagge
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SPIKING NEUROMORPHIC TODAY: 
SCALABLE AND PROGRAMMABLE IN-MEMORY COMPUTE

13

Computational Primitives: 
 Spiking Neurons (vertices/nodes)
 Synapses (connections/edges)

Programmable as arbitrary graphs
• Edges: Directed and weighted
• Nodes: Threshold gate logic + time 
• Artificial neural networks are a 

special case
• Programmability, theoretical, 

analysis, and software are open 
research questions

Neural Logic Core
~103 – 104 neurons 

105
 -106 edges

Neural Chip
~101 - 102 cores
104

 -106 neurons

Neural System
~102 - 104 chips

106
 -109 neurons



SPIKING NEUROMORPHIC TODAY: STILL FAR FROM THE ACTUAL 
BRAIN

Computational Primitives: 
 Spiking Neurons (vertices/nodes)
 Synapses (connections/edges)

Programmable as arbitrary graphs
• Edges: Directed and weighted
• Nodes: Threshold gate logic + time 
• Artificial neural networks are a 

special case
• Programmability, theoretical, 

analysis, and software are open 
research questions

Today’s neuromorphic systems are far from the 
brain in terms of complexity and scale 



PART 2:

WHAT MAKES NEURAL COMPUTING 
DIFFERENT?



Specialized General PurposeTruly General Purpose Application Specific

NEUROMORPHIC IS LIKELY SIMILAR TO GPUS IN DEGREE OF 
SPECIALIZATION

16



CLAIM: THE MAJOR CHALLENGE TO NEUROMORPHIC 
COMPUTING TODAY IS THE ALGORITHM IMPACT

Identifying neuromorphic advantages today will

 Communicate the fundamental value proposition 
of neuromorphic hardware

 Determine how neuromorphic computing fits into 
the broader ecosystem (GPUs, accelerators, etc)

 Clarify what aspects of today’s neuromorphic 
architectures need to be improved

 Justify cost of moving to new non-CMOS materials 

Hypothesis: Identifying classes of computation that 
are preferentially accelerated by neuromorphic can 
perhaps do for those paradigms what GPUs did for AI



Ta Tb Tc Td Te Tf

T1
Serial run time (Total algorithm work)

T∞

Minimum time (Minimal computational depth)

UNDERSTANDING NEUROMORPHIC COMPLEXITY



Ta Tb Tc Td Te Tf

T1
Serial run time (Total algorithm work)

T∞

Minimum time (Minimal computational depth)

Conventional programs and data exist in memory

Neuromorphic programs must be fully realized in 
hardware

CPU / GPU

RAM

IN-MEMORY COMPUTING FUNDAMENTALLY CHANGES SCALING



Ta Tb Tc Td Te Tf

T1
Serial run time (Total algorithm work)

T∞

Minimum time (Minimal computational depth)

Brent’s Theorem: for p processors, run time Tp is 
bounded by graph depth T∞

max 𝑇𝑇∞,
𝑇𝑇1
𝑝𝑝

≤ 𝑇𝑇𝑝𝑝 ≤
𝑇𝑇1
𝑝𝑝

+ 𝑇𝑇∞

p

Tp Cp

T∞

spacetime

For conventional systems, time and space can be 
directly traded off
For NMC (and all in memory compute), there is no tradeoff

THE SIZE OF ALGORITHM DICTATES TIME AND SPACE OF 
NEUROMORPHIC IMPLEMENTATION



Ta Tb Tc Td Te Tf

T1
Serial run time (Total algorithm work)

T∞

Minimum time (Minimal computational depth)

IMPLICATION: NEUROMORPHIC CAN BE FAST… 
                                               BUT YOU NEED A LOT OF NEURONS

arXiv preprint arXiv:2507.17886



MEMORY ACCESS DOMINATES CONVENTIONAL ENERGY

Sa,1 Sb,1

a b 𝑆𝑆𝑏𝑏,1 = 𝑓𝑓𝑏𝑏(𝑆𝑆𝑎𝑎,1)

∅

Sb,1

∆Gb ≈ O(Tb)

Sa,1

Energy = 
Energy(operations) + Energy(communication)

Conventional
• Energy costs (at least within processors) are largely 

communication to and from memory
• Because processors are shared, conventional 

algorithms must continually communicate algorithm 
states to and from memory.

• Memory updates are largely state-independent, so 
energy costs are relatively independent of initial and 
end states

Conventional energy scales with total work



Ta Tb Tc Td Te Tf

T1
Serial run time (Total algorithm work)

a

b

d

c

e f

T∞

Minimum time (Minimal computational depth)

NEUROMORPHIC ENERGY DOES NOT SCALE THE SAME WAY

arXiv preprint arXiv:2507.17886



WHAT DOES EVENT-DRIVEN IMPLY?

Sa,1 Sb,1

a b 𝑆𝑆𝑏𝑏,1 = 𝑓𝑓𝑏𝑏(𝑆𝑆𝑎𝑎,1) 𝑆𝑆𝑏𝑏,1 = 𝑓𝑓𝑏𝑏(𝑆𝑆𝑏𝑏,0, ∆𝑆𝑆𝑎𝑎)

∆Sa ∆Sb

a b

Sb,1

Sb,0∆Sa

∆Gb ≈ O(∆Sb )

∅

Sb,1

∆Gb ≈ O(Tb)

Sa,1

Because processors are shared, conventional 
algorithms must continually communicate 
algorithm states to and from memory.

 This is why energy cost is relatively 
independent of what initial and end states are.

This is not automatic! 
Spiking algorithms must be 

designed specifically to do this!

Neurons are event-driven, which means their state is 
only updated if necessary. 

Neural algorithm communication should focus on 
how these states should be updated



ENERGY OF NEUROMORPHIC SCALES WITH CHANGE OF STATE

Ta Tb Tc Td Te Tf

Total algorithm work

a

b

d

c

e f

Energy = 
Energy(operations) + Energy(communication)

Conventional
• Energy costs are largely communication to and from 

memory
• Memory updates are largely state-independent

Conventional energy scales with total work

Neuromorphic
• Energy costs are largely communication between 

compute elements
• Communication is event-driven.  No energy 

expended if there is no change
Neuromorphic energy scales with the change of 
state across computational graph

• Upper bound is still total work
• Lower bound can be really low… 

Sb,1

Sb,0∆Sa

∆Gb ≈ O(∆Sb )
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Serial run time (Total algorithm work)
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b

d
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T∞

Minimum time (Minimal computational depth)

ENERGY OF NEUROMORPHIC SCALES WITH CHANGE OF STATE

arXiv preprint arXiv:2507.17886



WHAT MAKES FOR A LOW ∆G?

Low ∆G
• Algorithm state does not change much
• Path-dependent trajectories
• Does not change algorithmic work

Promising candidates
• Sparse computations
• Monte Carlo algorithms
• Iterative and recurrent algorithms
• Optimization
• Online algorithms

High ∆G (∆G ≈ T1)
• Algorithm state changes are extensive
• Algorithms “touch” most/all memory
• Equal to algorithm work if everything 

changes with each operation

Example candidates
• Dense linear algebra
• Graphics rendering
• Modern AI algorithms (as formulated)
• Cryptography



PART 3:

HOW DOES NEUROMORPHIC IMPACT 
REAL COMPUTING APPLICATIONS?



Neuromorphic 
hardware can 
efficiently solve 
finite element 

method 
simulations

Neuromorphic 
hardware can 
efficiently solve 

stochastic 
Monte Carlo 
simulations

Smith et al., Nature Electronics, 2022

Theilman and Aimone, in press 2025



CAN WE REFORMULATE MONTE CARLO FOR NEUROMORPHIC?

Initial State Final State

↑
𝑥𝑥𝑖𝑖(𝑡𝑡 + 1)

↓
= 𝑓𝑓

↑
𝑥𝑥𝑖𝑖 𝑡𝑡
↓

, 𝑋𝑋,⋯ +
↑

𝑥𝑥𝑖𝑖(𝑡𝑡)
↓

�𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑 = 𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑋𝑋,⋯ )

K particles K location-dependent updates

↑
𝑚𝑚𝑖𝑖(𝑡𝑡 + 1)

↓
= 𝑔𝑔𝑖𝑖 𝑋𝑋,⋯ +

↑
𝑚𝑚𝑖𝑖(𝑡𝑡)
↓

M locations M location-specific updates

�𝑑𝑑𝑚𝑚𝑖𝑖
𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑖𝑖(𝑋𝑋,⋯ )



USE NEURONS TO REPRESENT STATE SPACE OF MONTE CARLO 
AND USE SPIKES TO REPRESENT PARTICLES

31

Leaky integrate-and-fire neuron

Smith et al., Nature Electronics 2022



NEUROMORPHIC COMPUTING ADVANTAGE APPEARS TO BE WHEN AN 
ALGORITHM CAN SPLIT THE TASK ACROSS COMPUTATIONAL GRAPH 
WITH SPARSE COMMUNICATION

32



WE CAN IDENTIFY A NEUROMORPHIC ADVANTAGE FOR SIMULATING 
RANDOM WALKS 

33

We define a neuromorphic advantage as an 
algorithm that shows a demonstrable 

advantage in terms of one resource (e.g., 
energy) while exhibiting comparable scaling in 

other resources (e.g., time). 

Smith et al., Nature Electronics 2022



WHAT PDES CAN NEURAL RANDOM WALKS ADDRESS?

34

𝑢𝑢(𝑡𝑡, 𝒙𝒙) = 𝔼𝔼 �𝑔𝑔�𝑿𝑿(𝑡𝑡)� exp �� 𝑐𝑐�𝑠𝑠, 𝑿𝑿(𝑠𝑠)�d𝑠𝑠
𝑡𝑡

0
� + � 𝑓𝑓�𝑠𝑠, 𝑿𝑿(𝑠𝑠)� exp�� 𝑐𝑐�ℓ, 𝑿𝑿(ℓ)�dℓ

𝑠𝑠

0
�d𝑠𝑠

𝑡𝑡

0
� 𝑿𝑿(0) = 𝒙𝒙�. 

d𝑿𝑿(𝑡𝑡) = 𝒃𝒃�𝑡𝑡, 𝑿𝑿(𝑡𝑡)�d𝑡𝑡 + 𝒂𝒂�𝑡𝑡, 𝑿𝑿(𝑡𝑡)�d𝑾𝑾(𝑡𝑡) + 𝒉𝒉(𝑡𝑡, 𝑿𝑿(𝑡𝑡), 𝑞𝑞)d𝑃𝑃�𝑡𝑡; 𝑄𝑄, 𝑿𝑿(𝑡𝑡)�. 

𝜕𝜕
𝜕𝜕𝜕𝜕
𝑢𝑢(𝑡𝑡, 𝒙𝒙) =

1
2
�(𝒂𝒂𝒂𝒂⊤)𝑖𝑖,𝑗𝑗 (𝑡𝑡, 𝒙𝒙)

𝜕𝜕2

𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗
𝑢𝑢(𝑡𝑡, 𝒙𝒙) + �𝑏𝑏𝑖𝑖(𝑡𝑡, 𝒙𝒙)

𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

𝑢𝑢(𝑡𝑡, 𝒙𝒙)
𝑖𝑖𝑖𝑖,𝑗𝑗

 

+𝜆𝜆(𝑡𝑡, 𝒙𝒙)��𝑢𝑢�𝑡𝑡, 𝒙𝒙 + 𝒉𝒉(𝑡𝑡, 𝒙𝒙, 𝑞𝑞)� − 𝑢𝑢(𝑡𝑡, 𝒙𝒙)�𝜙𝜙𝑄𝑄(𝑞𝑞; 𝑡𝑡, 𝒙𝒙)d𝑞𝑞 

+𝑐𝑐(𝑡𝑡, 𝒙𝒙)𝑢𝑢(𝑡𝑡, 𝒙𝒙) + 𝑓𝑓(𝑡𝑡, 𝒙𝒙), 𝑥𝑥 ∈ ℝ𝑑𝑑 , 𝑡𝑡 ∈ [0,∞). 

Class of Partial Integro-Differential Equations:

Stochastic Process:

Solution to initial value problem (u(0,x)=g(x)): Monte Carlo Approximates This Expectation

NMC Hardware Simulates This Stochastic 
Process

Smith et al., Nature Electronics 2022



Neuromorphic 
hardware can 
efficiently solve 
finite element 

method 
simulations

Neuromorphic 
hardware can 
efficiently solve 

stochastic 
Monte Carlo 
simulations

Smith et al., Nature Electronics, 2022

Theilman and Aimone, in press 2025



CAN WE TACKLE FEM WITH PROBABILISTIC NEURAL HARDWARE?

?????

𝜑𝜑𝑖𝑖(𝑥𝑥, 𝑦𝑦) 𝜑𝜑𝑗𝑗(𝑥𝑥, 𝑦𝑦)

Ω

𝑢𝑢(𝑥𝑥, 𝑦𝑦) ≈  �
𝑖𝑖

𝑢𝑢𝑖𝑖𝜑𝜑𝑖𝑖(𝑥𝑥, 𝑦𝑦)

𝑨𝑨𝒖𝒖 = 𝒃𝒃Sparse, linear system

Basis functions

Coefficients

Finite Element Methods – Gold Standard but expensive

∇2𝑢𝑢 = 𝑓𝑓

NEUROMORPHIC FINITE ELEMENT METHODS?



• Locally dense, globally sparse connectivity

• Scalable: neighbors ~ O(1)

• Sparse spiking activity

Neuromorphic virtues:

Theilman and Aimone, in press 2025



Theilman and Aimone, in press 2025



NEUROFEM PROVIDES SOLVER-QUALITY SOLUTIONS

Theilman and Aimone, in press 2025



NEUROFEM IS SIMILAR IN SPEED TO GMRES AND CONJUGATE 
GRADIENT

Conjugate gradient is faster at small 
scales, but can only be used for 
symmetric matrices

Neuromorphic solution is general 

Theilman and Aimone, in press 2025



NEUROFEM SHOWS COMPELLING STRONG AND WEAK SCALING

Strong Scaling Weak Scaling

Theilman and Aimone, in press 2025



LOW-POWER SCIENTIFIC COMPUTING ON NEUROMORPHIC

Neuromorphic 
hardware can 
efficiently solve 
finite element 

method 
simulations

Neuromorphic 
hardware can 
efficiently solve 

stochastic 
Monte Carlo 
simulations

Severa et al., IJCNN 2018
Smith et al., ICONS 2020
Aimone et al., ICRC 2021
Smith et al., Nature Electronics, 2022 Theilman and Aimone, in press 2025

Both probabilistic and sparse methods 
are emerging frontiers in AI algorithms!



• Neuromorphic Computing offers distinct 
advantages complementary to existing 
accelerators and processors

 

• Effectively free from an energy and power 
perspective when suitably used

• Back to basics – this only makes sense if 
algorithms are co-designed to leverage 
neuromorphic advantages

• A path to energy-efficient AI?

WE NEED MOD SIM TO DETERMINE HOW NEUROMORPHIC FITS 
INTO FUTURE HPC SYSTEMS



THANK YOU!

44

Craig M Vineyard, Suma G Cardwell, Corinne M Teeter, William 
Severa, J Darby Smith, Felix Wang, Fred Rothganger, Michael 
Krygier, Cale Crowder, Bradley H Theilman, William Chapman, 
Ryan Dellana, Mark Plagge, Efrain Gonzalez, Srideep Musuvathy

Aaron Hill, Shashank Misra, Yang Ho, Brady Taylor, Chris 
Allemang, Rich Lehoucq, Brian Franke, Ojas Parekh

Any questions to jbaimon@sandia.gov
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