



# **Photonic Connectivity for AI Systems**

Keren Bergman

Columbia University, New York, NY 10027, USA







### **Artificial Intelligence Model Scaling Trend**



- **❖** Inflection Point (2018–2020)
- ➤ Shift from conventional deep learning (DL) to transformer-based (LLM)
- Steady increase in compute
- Co-Scaling Compute and Communication







### **Growing Gap: Model Sizes Exceed GPU Capacity**



> 2 orders of mag





### Network Hierarchies in Accelerator Based Al Compute Systems





#### **Commercial Photonics in Scale Up**

#### Nvidia's GB200 NVL72



- Copper-based electrical links
- ❖ Limited scale-up domain (72)
- Nvidia's higher per-chip compute is constrained by its electrical interconnects when scaling for aggregate compute performance.

#### Huawei CloudMatrix 384



- Linear Pluggable Optical cables
- Increased scale-up domain (384)
- Higher total compute power due to larger scale-up domain (with lower per-GPU compute)
- Lower power-per-bit

#### **Scaling AI Networking Infrastructure**

Compute / Memory / Interconnect Comparison\*

| Chip-Level                 | Nvidia<br>GB200 | Ascend 910C |
|----------------------------|-----------------|-------------|
| TFLOPs                     | 2,500           | 780         |
| HBM Capacity (GB)          | 192             | 128         |
| HBM Bandwidth (TBps)       | 8               | 3.2         |
| Scale Up Bandwidth (Tbps)  | 7.2             | 2.8         |
| Scale Out Bandwidth (Tbps) | 0.4             | 0.4         |

| System-Level               | GB200<br>NVL72 | CLoudMatrix<br>384 |
|----------------------------|----------------|--------------------|
| # Compute Units            | 72             | 384                |
| PFLOPs                     | 180            | 300                |
| All-In System Power (kW)   | 145            | 599                |
| HBM Capacity (TB)          | 13.8           | 49.2               |
| HBM Bandwidth (TBps)       | 576            | 1,229              |
| Scale Up Bandwidth (TBps)  | 64.8           | 134.4              |
| Scale Out Bandwidth (TBps) | 3.6            | 19.2               |

<sup>\*</sup> Numbers based on SemiAnalysis report: https://semianalysis.com/2025/04/16/huawei-ai-cloudmatrix-384-chinas-answer-to-nvidia-gb200-nvl72/

<sup>\*\*</sup> Estimated based on 384 compute-unit scale-up domain size





Remote Memory

Optical Interconnects

# **Bringing Photonics into Computing Sockets**





**CUbiC System** 

Embedded Photonic I/O

**Embedded Photonics Data Input/Output (I/O)** 





#### **NVIDIA's Co-Packaged Optics for Scale-Up**



- Micro-resonators
  - Compactness
  - Scalability
- 3D Integration
  - Best of both worlds
  - Integration density

What's still needed: Multi-λ Sources Scalable DWDM Link

Validates DWDM Link Architecture for BW density



### Realizing Extreme Bandwidth Density with Energy Efficiency







### Link with Massive Parallelism in Wavelength Domain

- Realize extreme bandwidth density: multi-Tbps per single link
- Ultra low energy/bit <1pJ/b</li>



Link bandwidth and energy/bit are distance independent



### Key Enabler: High Power Comb



Gaeta, Lipson





75 Channels > 0.5mW



Normal GVD Kerr comb with 46% conversion efficiency



#### Tbps/Fiber Link Co-Designed with Comb

- 100 GHz comb source
  - 75 lines > 0.5 mW
  - 46.2% conversion efficiency
- Broadband interleavers
  - 2 stages 200/400 GHz FSR
  - Enables multi-FSR
- 16 Gbps/ch × 64  $\Rightarrow$  1 Tbps/link
- 32 Gbps/ch × 64  $\Rightarrow$  2 Tbps/link
- 32 Gbps/ch × 128 ⇒ 4 Tbps/link

Yuyang Wang et al. SPIE OPTO, 2023 Yuyang Wang et al. IEEE CICC, 2024 Yuyang Wang et al. IEEE T-CPMT, 2025





#### Full 300 mm Wafer - Cedar





#### Full 300 mm Wafer - Oak











#### Full 300 mm Custom Wafer – Spruce (in Fab)





#### Link Multi-Channel WDM Design

#### Custom Resonators Co-Designed with Comb





Microdisk Modulator

Microdisk Filter

- <u>Fab-robustness</u> w/o inner sidewall
- Modulation efficiency custom vertical junction
- Fabricated FSR <u>closely match</u> design values





# 3D Photonic IO









# Fully Assembled High Density 5.3 Tb/s/mm<sup>2</sup> MCM





# **Energy Breakdown**

- **2.048 Tb/s** per fiber: 64 λ 32 Gbps/channel
- > 5.4 Tb/s/mm edge bandwidth density

#### **Energy Breakdown**

|                   | Component           | Energy [fJ/b]<br>w/o undercut | Energy [fJ/b]<br>w/ undercut |
|-------------------|---------------------|-------------------------------|------------------------------|
| 0h*               | Comb Generation     | 112.3                         | 112.3                        |
| Comb <sup>*</sup> | Comb Thermal        | 24.9                          | 24.9                         |
| FI0               | Tx Driver           | 40.0                          | 40.0                         |
| EIC               | Rx TIA              | 100.4                         | 100.4                        |
|                   | Interleaver Thermal | 35.2                          | 7.0                          |
| PIC               | Modulator Thermal   | 58.0                          | 11.6                         |
|                   | Filter Thermal      | 26.0                          | 5.2                          |
|                   | Total               | 396.7                         | 301.4                        |

Assuming 15% overall comb WPE.





#### Bidirectional 96 Tb/s Multi-Chip Package







- 1024 disk modulators and 1024 filters integrated per PIC
- 3 PICs per package, <u>3D integrated</u> EICs
- 16 Gbps/channel ⇒ >16 Tbps across ~8 mm shoreline
- 2 Tbps/mm (4 Tbps/mm bidirectional) bandwidth density





Multi-chip package (MCP) consisting an FPGA and **96 Tb/s** bidirectional bandwidth achieved by 6 optical I/O chiplets.







# **Expanding the Memory Pooling Design Space**

Compute die's shoreline width is used a critical resource.













### SiPAM: Silicon Photonic Accelerated Memory-Pooling



15 IOs = 30 TBps / GPU



#### SiPAM: Silicon Photonic Accelerated Memory-Pooling



- ❖ Each SiP I/O can be **flexibly allocated** for high-speed memory access or network communication.
  - One-shot reconfiguration per workload



### **Evaluation Setup**

#### Hardware - Nvidia GPU Based

| Single CU   | FP16<br>TFLOPs | Mem Cap<br>(GB) | Mem BW<br>(TBps) |
|-------------|----------------|-----------------|------------------|
| Nvidia A100 | 312            | 40              | 1.5              |
| Nvidia H100 | 1000           | 80              | 3                |
| Nvidia B100 | 3500           | 192             | 8                |
| SiPAM*      | 3500           | Up to 720       | Up to 30         |

Cluster Size: up to 1024 GPUs

| Cluster of<br>1024 CUs | FP16<br>PFLOPs | Mem Cap<br>(TB) | Mem BW<br>(PBps) |
|------------------------|----------------|-----------------|------------------|
| Nvidia A100            | 320            | 41              | 1.5              |
| Nvidia H100            | 1024           | 82              | 3.1              |
| Nvidia B100            | 3584           | 197             | 8.2              |
| SiPAM*                 | 3584           | Up to 737       | Up to 31         |

<sup>\*</sup> Assuming B100 as CU and HBM3E as MU





# **Simulation Results - Training**

- ❖ Workloads: Megatron-126M/5B/22B/40B/1T, Anthropic 52B, Chichilla-64B, GPT3-175B (Training)
- Baseline: Up to 256 B100 GPUs each with fixed 192 GB HBM memory @ 8 TBps total memory bandwidth
- ❖ SiPAM: Up to 256 GPUs, with compute, memory bandwidth, and capacity optimized based on each workload



- a) SiPAM tracks arithmetic intensity closely, while the baseline remains constant
- b) SiPAM improves training time by up to **3.5x**



#### **Simulation Results - Inference**

- ❖ Workloads: Megatron-126M/5B/22B/40B/1T, Anthropic 52B, Chichilla-64B, GPT3-175B (Inference)
- ❖ Baseline: Up to 64 B100 GPUs each with fixed 192 GB HBM memory @ 8 TBps total memory bandwidth
- SiPAM: Up to 64 GPUs, with compute, memory bandwidth, and capacity optimized based on each workload



- a) SiPAM tracks arithmetic intensity closely, while the baseline remains constant
- b) SiPAM improves inference time by up to **3.5x**



### Pushing the Limits of Al Systems with Embedded Photonics

#### Nvidia's GB200 NVL72



- Copper-based electrical links
- Limited scale-up domain (72)
- Nvidia's higher per-chip compute is constrained by its electrical interconnects when scaling for aggregate compute performance.

#### Huawei CloudMatrix 384



- Linear Pluggable Optical cables
- ❖ Increased scale-up domain (384)
- ❖ Higher total compute power due to larger scale-up domain (with lower per-GPU compute)
- Lower power-per-bit

#### Embedded photonics is the solution! **\***



- Much higher bandwidth density (> 4 Tbps/mm)
- Much lower energy consumption (sub-pl/bit)
- Distance agnostic scaling (>1000 GPUs in scale-up)

#### **Scaling AI Networking Infrastructure**

| Compute / Memory / Interconnect Comparison* |                                                    |                                                                               |  |
|---------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------|--|
| Nvidia<br>GB200                             | Ascend 910C                                        | Embedded<br>Photonics                                                         |  |
| 2,500                                       | 780                                                | -                                                                             |  |
| 192                                         | 128                                                | Up to 720 GB                                                                  |  |
| 8                                           | 3.2                                                |                                                                               |  |
| 7.2                                         | 2.8                                                | > 240 Tbps                                                                    |  |
| 0.4                                         | 0.4                                                |                                                                               |  |
| GB200                                       | CLoudMatrix                                        | Embedded                                                                      |  |
| NVL72                                       | 384                                                | Photonics                                                                     |  |
|                                             |                                                    |                                                                               |  |
| NVL72                                       | 384                                                | Photonics                                                                     |  |
| <b>NVL72</b> 72                             | 384<br>384                                         | Photonics                                                                     |  |
| 72<br>180                                   | 384<br>384<br>300                                  | Photonics                                                                     |  |
| 72<br>180<br>145                            | 384<br>384<br>300<br>599                           | > 1000<br>-<br>-                                                              |  |
|                                             | Nvidia<br>GB200<br>2,500<br>192<br>8<br>7.2<br>0.4 | Nvidia<br>GB200 Ascend 910C   2,500 780   192 128   8 3.2   7.2 2.8   0.4 0.4 |  |

19.2

Scale Out Bandwidth (TBps)

<sup>\*</sup> Numbers based on SemiAnalysis report: https://semianalysis.com/2025/04/16/huawei-ai-cloudmatrix-384-chinas-answer-to-nvidia-qb200-nvl72/

<sup>\*\*</sup> Estimated based on 384 compute-unit scale-up domain size



# Scalable Energy Efficient AI Photonic Architectures

System scalability with photonic connectivity

Flexible, composable to workloads









# NORTHROP GRUMMAN





























