k? Brookhaven
National Laboratory

‘:&,‘,‘u'mr,‘.% U.S. DEPARTMENT OF
2% >
2=

PerfVec: Generalizable Representation
Learning for Performance and Energy
Modeling of Computer Architectures

Lingda Li
Brookhaven National Laboratory

ModSim 2025
Seattle, WA

Computer Architecture ModSim

- Essential to computer architecture research and engineering
* New design evaluation, design space exploration, resource scheduling, ...

» Goals: speed, accuracy, and generalizability

Methodology Speed Accuracy Generalizability
Analytical Modeling Fast Low High

/L LT O Low.,
Discrete Event Simulation =Slow Variable High
Emulation Medium Variable Medium
Machine Learning (ML)-based Modeling Fast High Low
ML-based Simulation Medium Variable Medlum
PerfVec (this work) Fast? High? High?

Goal: explore better tradeoff using ML, especially on generalizability

Li, Flynn, Hoisie. Learning Generalizable Program and Architecture Representations for Performance Modeling. SC 2024.

L? Broo

National

Generalizable Modeling

« Performance/energy is determined by software and hardware.

* A generic model should separate the impact of software
(program) and hardware (microarchitecture).
 When one changes, no need to re-model the other

* Not trivial to achieve such separation
« Complex interplay between program and microarchitecture

* Previous attempts are not general (e.g., several analytical models, matrix
completion).

PerfVec learns the separation automatically.

L?‘ Brookhaven

National Lahoratory

Learning Separation

Key idea 1: have two independent ML models to capture the

impacts of program and microarchitecture, respectively

0‘ .0

Program Program Program
. representation —: .

properties ® model : representation :
O = '

Performance Prediction
predictor results

: independent i
: of each other :

’ Microarchitecture P :
architecture . : Microarchitecture ;
. representation —P: . s
configuration model : representation :

L3 .

- The same program representation is used to predict its performance on any
microarchitecture, and vice versa.

L? Brookhaven

' National Laboratory

Learning Program Representation

Input Level of Detail Limitation
Profiling info » Often microarchitecture dependent
Low .
(e.g., performance counters) » Lack of low level details
Static program info , « Cannot capture dynamic execution (e.g., input impact)
Medium
(e.g., control flow graph) * Huge graphs to learn from
Instruction execution trace High » Huge amounts of instructions to learn from

« Challenge: programs typical execute at least billions of instructions, and no
ML model can deal with such long sequences.

Key idea 2: 1) learn the representations of individual

instructions and 2) compose a program representation from

those of all its executed instructions (divide-and-conquer)

L? Brookhaven

National Laboratory

Learning Instruction Representation

« Performance determination factors of an instruction

Factor

Microarchitecture Independent Feature

Own properties

Static properties (e.g., operation type); dynamic behavior (e.g.,
branch direction); reuse distance; branch entropy

Co-running instructions

Co-running instructions’ properties

Instruction,’s features
Instruction, ,’s features

Instruction, ’s features

Instruction

—P] representation —P

model

A sequence model
(e.g., LSTM, Transformer)

e

Instruction,’s
representation

Instruction,’s
representation

Instruction,’s
representation

Program representation

Refer to our SC24 paper
on how to compose
program representation

Generalizable across programs

L:!* Brookhaven Program traces are different combinations of instructions from the same set.

National Lahoratory

P e rfve c Tra i n i n g Replace the program

L?

representation model
F Ii!S

Naive solution: train all 3 models end-to-end N T
Challenge e e \
* Irregular and alterable microarchitectural space Microarchitocrs I's latency
« Difficult to train a universal microarchitecture coniguration . —>{REE I “
representation model i s
Key idea 3: train the instruction representation model to
predict instruction latencies on randomly selected
microarchitectures for generalizability
I’s
11-1 Instructio'n representation
Hypothesis: training with a sufficient P R
number of diverse microarchitectures \ P T——
enables generalizability to others. il ool microarchitectures
microarchitecture |M'|M?[.. —» Predictor |—» ¢/ 7 ...
representations
Brookhaven Train representations of sampled |—"" ;

National Laboratory

microarchitectures jointly

Data Acquisition & Model Architecture

* Instruction traces from gem5 simulation
» Easy to obtain instruction level latency
« Easy to configure microarchitectures

 Programs
« 17 SPEC CPU2017 benchmarks
10 for training, 7 for testing

 Microarchitectures

 Randomly generated gem5 configurations
* In-order/out-of-order cores, caches, memory, etc.
« 77 for training, 10 for testing

* Model architecture
« 2-layer LSTM by default
» See our SC24 paper for other architectures

L?’ Brookhaven

National Lahoratory

Prediction error

Generalizability Evaluation

Unseen programs Unseen microarchitectures
100% 100%
Seen programs Unseen programs g Seen programs Unseen programs
[:H}
50% S 50%
3|
id st d+sda]l 2 |90, %44, ;3 :
0% = ~h & b & b - _ - ® o - 0% L @ a $|0 © & 0 o
& F ¥ L FRX & oP & O S Q2 N v & ¥ 0 v D> N L T ~x
S F £ FgE V5 &5 & S£5 S FF FFTF I 5§88 §s5 &
o A Y LSS F P & 9.5 o g o X 3 > M SR L o8 o TN S
o A K & g <9 T § I o © & N & A” Q& W RS F ¥R I SR &
o & ¥ P S & e 3 T Y E LSS FE § 5§68 &Y
Ny O S S ¢ o3 @ - o ; &
& §F & S & S & & § & S § &

Prediction error range against gem5 simulation across all microarchitectures

The trained model generalizes well to unseen
programs and microarchitectures.

L? Brookhaven

National Laboratory

PerfVec Use Cases

* PerfVec can be used in many tasks that require ModSim.

* A case study: design space exploration (DSE)
 Find the optimal design(s) given one/multiple objective function(s)

« DSE example: L1 and L2 cache size exploration
» Objective function: execution_time * (1000 + 10*L1_size + L2_size)
« Similar to latency area product

» Select the best cache sizes for 17 SPEC CPU2017 benchmarks

¢ Brookhaven
L 10

National Lahoratory

DSE Procedure

Froze during
training

_ I’s
I,

e Train a microarchitecture
representation model

Il Instruction representation
i1 —ppl representation |— R;

A 2-layer MLP

[model \

[;’s latency

 Training data: gemb5 simulation traces of 3 benchmarks on

selected configurations

> ¢

L1 size
Predictor
L2 size

* Predict the performance of all benchmarks
» Use the trained microarchitecture representation model and existing

program representations

L?’ Brookhaven

National Lahoratory

11

DSE Results

ly Lower is better

« Complete gem5 simulation: 600 hours Method | Overhead | Quality
* Previous ML-based DSE methods ASPLOS06 | 150 4-4%
. . . MICROO07 84 4.7%
» Use selected simulation results to train
program-specific models DAC16 170 3.6%
» Need to simulate many configurations Perfvec I 3-6%
for each program Overhead: the time to construct models (hours)
Quality: how close the selected design is to the
« PerfVec optimal design.
° Incur S|gn|f|Cant|y IeSS Overhead W|th 1. lpek et al. Efficiently exploring architectural design
. spaces via predictive modeling. ASPLOS 2006.
COmparab|e quallty 2. Dubachletal. Microarchitgctural desigr? space
] Lo exploration using an architecture-centric approach.
° 11 hOUFS = 5 (data CO”eCtIOn) + 6 (tralnlng) 3. mlgz?él(‘)f?;éntdesign space exploration via statistical

sampling and adaboost learning. DAC 2016.

L?‘ Brookhaven

National Lahoratory

Analytical Energy Modeling

» Architecture-level analytical energy models (e.g., McPAT; Wattch)

static energy dynamic energy
| |

* Energy = static_power * execution_time + 2(event_count * energy/event)
« Events: FP multiplications, register file/ROB accesses, L1/L2 cache accesses, ...
« Static power and energy per event are architecture specific.

* Rely on slow simulation to generate execution time and event counts

Program
Execution time
register file accesses Energy
L1/L2 cache accesses McPAT Power
Area
Hardware
configuration

¢ Brookhaven
National Laboratory 13

Extend PerfVec for Energy Modeling

« Train a PerfVec event model to predict instruction event counts
« Similar to the latency prediction models

PerfVec
Program ..
; performance Execution time
execution trace
model

Microarchitecture PerfVec # register file accesses Area
configuration event # L1/L2 cache accesses
parameters model _

* Average dynamic power
prediction error: 8.1%

« Orders of magnitude faster

I PerfVec

L?‘ Brookhaven

National Lahoratory

14

PerfVec Summary

* High generalizability

» Learn independent program and microarchitecture representations

« (Good accuracy
» Learn program representations from instruction execution traces

« Fast speed
« Simple combination of program and microarchitecture representations

« Many potential applications
» Design space exploration, performance and power analysis, ...

* Code: https://qgithub.com/PerfVec/PerfVec
« Rapid fire: Kuan-Chieh and Sairam on design space exploration

L?‘ Brookhaven

National Laboratory 15

