
PerfVec: Generalizable Representation 
Learning for Performance and Energy 
Modeling of Computer Architectures

ModSim 2025

Seattle, WA

Lingda Li

Brookhaven National Laboratory



Computer Architecture ModSim

• Essential to computer architecture research and engineering
• New design evaluation, design space exploration, resource scheduling, …

• Goals: speed, accuracy, and generalizability
GeneralizabilityAccuracySpeedMethodology

HighLow
FastAnalytical Modeling

LowHigh

HighVariableSlowDiscrete Event Simulation

MediumVariableMediumEmulation

LowHighFastMachine Learning (ML)-based Modeling

MediumVariableMediumML-based Simulation

Goal: explore better tradeoff using ML, especially on generalizability

High?High?Fast?PerfVec (this work)

Li, Flynn, Hoisie. Learning Generalizable Program and Architecture Representations for Performance Modeling. SC 2024.



Generalizable Modeling

• Performance/energy is determined by software and hardware.

• A generic model should separate the impact of software 
(program) and hardware (microarchitecture).
• When one changes, no need to re-model the other

• Not trivial to achieve such separation
• Complex interplay between program and microarchitecture
• Previous attempts are not general (e.g., several analytical models, matrix 

completion).

3

PerfVec learns the separation automatically.



• The same program representation is used to predict its performance on any 
microarchitecture, and vice versa.

Learning Separation

4

Key idea 1: have two independent ML models to capture the 
impacts of program and microarchitecture, respectively

independent
of each otherMain focus



Learning Program Representation

• Challenge: programs typical execute at least billions of instructions, and no 
ML model can deal with such long sequences.

5

LimitationLevel of DetailInput

• Often microarchitecture dependent
• Lack of low level details

Low
Profiling info
(e.g., performance counters)

• Cannot capture dynamic execution (e.g., input impact)
• Huge graphs to learn from

Medium
Static program info
(e.g., control flow graph)

• Huge amounts of instructions to learn fromHighInstruction execution trace

Key idea 2: 1) learn the representations of individual 
instructions and 2) compose a program representation from 
those of all its executed instructions (divide-and-conquer)



Learning Instruction Representation

• Performance determination factors of an instruction

6

Microarchitecture Independent FeatureFactor

Static properties (e.g., operation type); dynamic behavior (e.g., 
branch direction); reuse distance; branch entropy

Own properties

Co-running instructions’ propertiesCo-running instructions

A sequence model
(e.g., LSTM, Transformer)

Refer to our SC24 paper 
on how to compose 

program representation

Generalizable across programs
Program traces are different combinations of instructions from the same set.

Instruction
representation

model

Instructioni’s
representation

Instructioni’s features
Instructioni-1’s features

…
Instructioni-c’s features

Instruction1’s 
representation

…

Instructionn’s
representation

…

Program representation



Train representations of sampled 
microarchitectures jointly

PerfVec Training

• Naïve solution: train all 3 models end-to-end

• Challenge
• Irregular and alterable microarchitectural space
• Difficult to train a universal microarchitecture 

representation model

• Hypothesis: training with a sufficient 
number of diverse microarchitectures 
enables generalizability to others.

7

Key idea 3: train the instruction representation model to 
predict instruction latencies on randomly selected 

microarchitectures for generalizability

Replace the program 
representation model



Data Acquisition & Model Architecture

• Instruction traces from gem5 simulation
• Easy to obtain instruction level latency
• Easy to configure microarchitectures

• Programs
• 17 SPEC CPU2017 benchmarks
• 10 for training, 7 for testing

• Microarchitectures
• Randomly generated gem5 configurations

• In-order/out-of-order cores, caches, memory, etc.
• 77 for training, 10 for testing

• Model architecture
• 2-layer LSTM by default
• See our SC24 paper for other architectures

8



Generalizability Evaluation

Prediction error range against gem5 simulation across all microarchitectures

Unseen microarchitecturesUnseen programs

The trained model generalizes well to unseen 
programs and microarchitectures.



PerfVec Use Cases

• PerfVec can be used in many tasks that require ModSim.

• A case study: design space exploration (DSE)
• Find the optimal design(s) given one/multiple objective function(s)

• DSE example: L1 and L2 cache size exploration
• Objective function: execution_time * (1000 + 10*L1_size + L2_size)

• Similar to latency area product

• Select the best cache sizes for 17 SPEC CPU2017 benchmarks

10



Froze during 
training

DSE Procedure

• Train a microarchitecture
representation model

• Training data: gem5 simulation traces of 3 benchmarks on 
selected configurations

• Predict the performance of all benchmarks
• Use the trained microarchitecture representation model and existing 

program representations

11

A 2-layer MLP



DSE Results

• Complete gem5 simulation: 600 hours

• Previous ML-based DSE methods
• Use selected simulation results to train

program-specific models
• Need to simulate many configurations

for each program

• PerfVec
• Incur significantly less overhead with

comparable quality
• 11 hours = 5 (data collection) + 6 (training)

1. Ïpek et al. Efficiently exploring architectural design 
spaces via predictive modeling. ASPLOS 2006.

2. Dubach et al. Microarchitectural design space 
exploration using an architecture-centric approach. 
MICRO 2007.

3. Li et al. Efficient design space exploration via statistical 
sampling and adaboost learning. DAC 2016.

Overhead: the time to construct models (hours)
Quality: how close the selected design is to the 
optimal design.

Lower is better

QualityOverheadMethod

4.4%150ASPLOS06

4.7%84MICRO07

3.6%170DAC16

3.6%11PerfVec



Analytical Energy Modeling

• Architecture-level analytical energy models (e.g., McPAT; Wattch)

• Energy = static_power * execution_time + Σ(event_count * energy/event)
• Events: FP multiplications, register file/ROB accesses, L1/L2 cache accesses, …
• Static power and energy per event are architecture specific.

• Rely on slow simulation to generate execution time and event counts

13

static energy dynamic energy



Extend PerfVec for Energy Modeling

• Train a PerfVec event model to predict instruction event counts
• Similar to the latency prediction models

• Average dynamic power
prediction error: 8.1%

• Orders of magnitude faster

14



PerfVec Summary

15

• High generalizability
• Learn independent program and microarchitecture representations

• Good accuracy
• Learn program representations from instruction execution traces

• Fast speed
• Simple combination of program and microarchitecture representations

• Many potential applications
• Design space exploration, performance and power analysis, …

• Code: https://github.com/PerfVec/PerfVec
• Rapid fire: Kuan-Chieh and Sairam on design space exploration


