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“Power is the currency 

of performance!”

Samuel Naffziger

      SVP and Corporate Fellow, AMD
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A New Era in Computing

• The Rise of AI:

• Explosive growth of Large Language Models (LLMs), deep learning, and complex AI workloads

• Demand for unprecedented computational power

• Extreme-Scale Computing:

• Massive data centers, supercomputers, and specialized AI accelerators

• Pushing hardware to its limits

As we push the boundaries of extreme-scale computing in the AI era, 

power and energy have become first-order constraints

 

at every level of the solution stack!
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Socket

• Physical Limits:

• Thermal design power (TDP) 

limits

• Power delivery infrastructure 

constraints

• Temperature constraints

• Platform Limits:

• Cooling solutions

• Power delivery and reliability

• Quality of Service

• Power = shared resource

• Infrastructure Impact:

• Data Center level voltage swings

• Operational  & Procurement 

Costs → TCO

• Environmental Impact:

• Growing carbon footprint

𝑝𝑒𝑟𝑓 = 𝑓(𝑝𝑜𝑤𝑒𝑟) 

How do we model 𝒇 ?

Node Data Center

Power Bottlenecks at Every Level
It’s not just about energy efficiency 
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We Want Cross-Stack Transparency
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• Power is not incorporated into decisions at the 

higher levels of software stack

• Lower levels oblivious of the software stack

• It is critical to integrate all the “power concepts” 

into the SW stack

• And make SW more “visible” at the hardware 

levels
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Goal: 

Power models with higher returns 

on performance
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Time Scale

ns-us ms seconds hours days

di/dt droops, power 

excursions

temperature, current, SoC 

power management

Node/application/request 

performance, energy 

efficiency

Datacenter level performance, 

energy efficiency

Model resolution requirements 

increase as we operate closer to 

physical limits

How Much Detail Do We Need?
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Power Modeling (Estimation) 

• Power meter => Correlate hardware events to power/energy values to build a digital power meter

• Can be done at fine-grain resolution

• E.g. Running Average Power Limit (RAPL)

• Modelling performance as a function of power is complex (no simple correlation)
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What You Ask for IS NOT Always What You Get

• Performance models, compilers, SW optimizations, etc. assume a fixed frequency => NOT THE CASE

• Power management firmware (PMFW) and hardware limit operating frequency

• Hardware clock modulation, firmware managed DVFS

• PMFW implements a set of algorithms and rules to manage/slosh power efficiently

• Leads to performance non-determinism and variability and complicates modeling

Temperature

Current

Transients

Power

Dynamic 

Power 

Management

User 

Specified 

Limits

Physical 

Limits

Power 

Efficiency

Traditional Computing Extreme Computing

𝑓𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 ≈ 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 𝒇𝒆𝒇𝒇𝒆𝒄𝒕𝒊𝒗𝒆 < 𝒇𝒕𝒂𝒓𝒈𝒆𝒕
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AVERAGE POWER INSTANTANEOUS POWER

Averages Hide the Details

• AMD Instinct  MI250 Accelerator running rocHPL with a set frequency of 1700MHz

• “Instantaneous Power” = high resolution average power (1ms)

• Zoomed in to 1s of total execution time

• High frequency power transients result in frequency modulation

• Not visible when observing average power
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GFX Frequency

EFFECTIVE GFXCLK

TDP

Set GFXCLK
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At-scale Details Matter

• High temperature 

 => higher leakage and less power available for performance

 => thermal throttling   

• Slowest node impacts overall performance in synchronized run [1]

•   LLAMA 3 diurnal 1-2% throughput variation based on time-of-day because of higher mid-day temperatures [2]

[1] Sinha, Prasoon, et al. "Not all GPUs are created equal: characterizing variability in large-scale, accelerator-rich systems." SC22. IEEE, 2022.

[2] Dubey, Abhimanyu, et al. "The llama 3 herd of models." arXiv e-prints (2024): arXiv-2407.
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• Results for SGEMM on Longhorn cluster [1]
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Omnistat – Details at Scale 

Omnistat is a set of Python utilities and data 

collectors to support scale-out cluster telemetry 

targeting AMD Instinct  GPUs/APUs

• Tracks metrics available via AMD SMI 

interface(s)
• GPU and HBM utilization

• GPU power, clock frequencies, thermals , power-caps

• RAS error counts, throttling events, HW counters

• Low overhead (target 1% or less)

• Resource manager job tracking 

(SLURM, Flux, PBSPro)

Open-source: https://github.com/ROCm/omnistat

Energy efficiency hyperparameter optimization of graph 

foundational models trained on Frontier [3]

[3] Lupo Pasini, Massimiliano, et al. "Scalable training of trustworthy and energy-efficient predictive graph 

foundation models for atomistic materials modeling: a case study with HydraGNN." The Journal of 

Supercomputing 81.4 (2025): 618.
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Reaction Vs. Prediction

• Current models are reactive

• Models base their behavior on past actions

• We want predictive models, perhaps using AI or hints

• Predict future performance demand to guide power management decisions 

• Examples

• Predict which VMs will be active when, based on learning over large amounts of past behavior

• LLMs repeat the same layer N times (32 for 8B, 126 for 405B)

• Predict number of output tokens

Single Inference

Llama 3.1 8B [2] – 4K/output input [reference]
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Modeling   𝑝𝑒𝑟𝑓 = 𝑓(𝑝𝑜𝑤𝑒𝑟)  is Difficult

… but Necessary

Takeaways

Frequency is not constant! (What You Ask for IS NOT Always What You Get!)

Performance non-determinism and variability complicate modeling

Predictive models are more attractive

Averages hide the details and at scale details matter

Expose fine-grain telemetry to the SW stack

Create interfaces between HW and SW for power
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Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The 

information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, 
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SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. 
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