
Architectures for the AI Era:
From a TPU to the Extreme Scale
Norman P. Jouppi, with contributions from the Google TPU team
June 23, 2025

The Big

https://www.youtube.com/watch?v=x_x-JAAKSvU

Key Insight #1
● Energy for control logic, SRAM, and register accesses needed

by matrix multiply dominates in CPUs
● Example from Mark Horowitz’s ISSCC 2014 Keynote, slide 33:

“Computing’s Energy Problem: (and what we can do about it)”:

4(8-bit add is 0.03pJ in 45nm)

Key Insight #1

5

<1pJ

● Solution: matrix operations on a 256x256 systolic array
○ Eliminate complex control logic (use pipelined enable bit)
○ Reuse fetched memory and register data >100X
○ Reduce energy overhead per compute by >10X

Systolic Execution: Data is Pipelined

● Systolic arrays first proposed in 1970’s
○ But largely forgotten in mainstream

computer architecture
○ Only multipliers, adders, and flops

● Wiring by abutment within array
○ Saves wire power
○ Avoids memory accesses
○ No complex control logic

Late 2013
● TPUv1 project started

○ TPU = Tensor Processing Unit, an example of a DSA
○ DSA = Domain-specific architecture
○ Tensor = multidimensional array

● Provided >10X better perf/TCO than contemporary alternatives
○ perf/TCO = end-to-end performance / total cost of ownership (including power over lifetime)
○ Simple to deploy PCIe card
○ But it only accelerated inference

7
From ISCA 2017

Late 2014
● TPUv1 was being fabbed
● We realized training capability was the limiting factor to producing models
● People thought a training chip would be too complicated to build

8

Late 2014
● TPUv1 was being fabbed
● We realized training capability was the limiting factor to producing models
● People thought a training chip would be too complicated to build
● So we decided to build a training chip plus a supercomputer 😀

9

Basic Plan for TPUv2
● Don’t invent anything more than necessary

○ Required to meet aggressive schedule
● Codesign from compiler down to chip physical design
● Start from a typical vector CPU architecture and add matrix operations

○ Similar to how the Cray-1 extended previous scalar machines with vector operations in 1975
○ Advantage: start with an architecture model with a compiler and add stuff
○ Leverage long-known compiler techniques for matrices in HPC (e.g., blocking, loop unrolling)
○ Use 8-operation VLIW architecture baseline since compiler schedules multiple ops/cycle
○ 8 instructions per cycle is a super-beefy scalar core!

10

Cray-1 Architecture

11

This part looks
like previous
CDC6600 and
CDC7600
machines

Circa 1975

Cray-1 Architecture

12

This part looks
like previous
CDC6600 and
CDC7600
machines

Cray-1 added
vector hardware
in a consistent
mannerCirca 1975

Basic Plan for TPUv2 (Part 2)

● Connect TPUs with shared memory distributed using high-bandwidth torus (ICI)
○ Similar to the Cray T3D’s 3D torus (circa 1993), but simpler
○ Leverages the intrinsic multidimensional array structure of tensor math mapped to interconnect

● ICI is 50X faster and 10X cheaper than Ethernet
○ No layers of protocol stacks
○ Many connections are PCB traces or short cheap copper cables

● ICI is the second key TPU feature (after systolic arrays)

13

Key Insight #2

Scalability on Real Workloads Using High-BW Torus
● Due to shared memory using

extreme interconnects at
unprecedented scales (many
ExaFLOPS):

○ 99% scaling efficiency on 75% of
workloads to 3K TPUv4

Basic Plan for TPUv2 (Part 3)

● Training was currently being done on CPUs and GPUs using FP32
○ Google’s SW stored FP32 values in 16 high-order bits to save storage space
○ Conversion from FP32 to 16 bits was performed by simple truncation (ouch!)
○ Preserved dynamic range while reducing precision
○ This datatype was called BF16 (Brain Float 16) in the SW

● Existing 16-bit FP formats (IEEE FP16) didn’t have enough dynamic range
● We realized we could supply BF16 inputs to multipliers, keep all product bits (i.e.,

FP24), and perform FP32 accumulation and get identical results as current SW
○ This saved multiplier HW
○ And we rounded to nearest even on conversion, giving better results

● But most importantly, it maintained SW compatibility with CPUs and GPUs
○ Models could train on CPUs, GPUs, and TPUs and all get the same results

● Hence BF16 is the 3rd key TPU feature
15

Key Insight #3

TPUv2

● 256 chips connected in a 2D torus
○ Narrow TPU trays, 4 per rack shelf
○ ICI ran 64 SerDes at 40Gb/s (“only” 2.56Tb/s per chip)

● Air cooled due to lower power consumption and faster time-to-market
● Servers were in separate racks

16

TPUv3
● Most of the team was working on TPUv2 bringup
● Hence only limited logic changes to TPUv2 were possible in TPUv3, but:

○ Optimized chip physical design to make room for 2nd MXU per core
○ Larger scale (4X chips) in 2X racks with 2X rack power supplies per rack
○ First TPU with water cooling
○ Optical cables for wrap-around torus links
○ 2X capacity per HBM

● 10X TPUv2 performance

TPU v4p
● Superpods of 64 racks of water-cooled compute (8 shown in photo)

○ Provides over 1 ExaFLOP (10X TPUv3 performance)
● Many superpods are connected via datacenter networking into bigger clusters

What Is a TPU Superpod?
A large pool of building blocks that can be connected on a per-job basis to form larger slices.

64-rack Superpod
(large interconnect

domain)

Arbitrary blocks
within the pool can
be assembled to

form slices

Dead nodes have
small blast radius

Any slice size or
shape can be

created, limited
only by pool size

Resources allocated
on a per job basis

Racks Are Connected With Optical Circuit Switches (OCS)
● Different ranks of OCS connect different dimensions and indices

20

V5p Superpods (8960 chips each, 4+ ExaFLOP)

https://www.youtube.com/watch?v=hszd5UqnfLk&t=3s

Google I/O 2024 Keynote

The Small

The End of Dennard Scaling

● Dennard Scaling:
○ Shrinking process lithography gives you more transistors
○ Scale voltage down
○ Power per area at same frequency constant

● This scaling ended around around 2004
● Hence chip power density will increase every

year from now to the end of lithographic scaling
○ This is not the same world as 15 years ago
○ We need to “Think Different”

24

Robert Dennard, member NAE
P.S. He also invented the 1T1C DRAM

● Reference: John Hennessy’s Turing Award talk: “The end of Dennard scaling
is an equally important problem as the end of Moore’s Law, but doesn't
receive as much attention”

25From John Hennessy’s Plenary talk at DARPA 2018 ERI Summit

Current Era: Model Growth Accelerates to 10X/Year!

26Source: Epoch (2024) – with minor processing by Our World in Data

Reduced Precision Formats
● Important to reduce the cost of serving large LLMs:

○ Memory footprint
○ Compute
○ Energy / power consumption

● But must preserve accuracy compared to larger formats
○ One mistake in a billion can make the news

● Automation is crucial to enable adoption
○ We can change the model to make it easier to quantize without loss of accuracy
○ Our ASPLOS paper: Hyperscale Hardware Optimized Neural Architecture Search

The Not Right at All

RAS: Reliability, Availability, and Serviceability
● Received a lot of attention in the past from finance and supercomputing

○ Finance: Debit of $1M vs. $1 is a big real-time problem
○ Less of a problem with large-scale scientific computations

● Now a significant issue with ML training
○ Similar to large-scale supercomputer calculations, only worse due to even larger scale

● Real-time reliability not required
○ Recovery from checkpoints OK
○ But errors must be detected
○ And overhead from restart can become burdensome if too frequent

Silent Data Corruption (SDC)
● Compared to silent data corruption, failure is a good option

○ We need to know we had an error so we can restart from a checkpoint
● But they can be expensive to detect

○ Tandem Nonstop fully duplicates computation and storage
● Algorithm Based Fault Tolerance

○ Opportunities for further research
○ A range of useful techniques would be helpful

Conclusions

Summary
● Research in AI is advancing at a tremendous pace!
● But we are limited by the compute to run these tools
● Research is needed in:

○ Reliable computation totalling from yotta 1024 to ronna 1027 ops
■ Provided by zetascale systems running for months

○ Advances in composite models (mixture of experts and beyond)
○ Higher interconnect speeds (including bisection for all-to-all)
○ Use SOTA software engineering for modeling and simulation, including but not limited to:

■ Code reviews
■ Regression testing
■ Include regular reviews by architects
■ Making sure models at different levels of abstraction meet at their boundaries

○ And many others

Q & A

