ModSim-2025

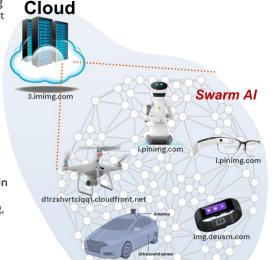
ModSim Challenges in Secure and Resilient AI (SARA) System Design

Pradip Bose

Distinguished Research Scientist and **Manager of Efficient and Resilient Systems** *IBM Research*

pbose@us.ibm.com

This research was developed in part with funding from the Defense Advanced Research Projects Agency (DARPA) and later from the DoD/RAMP-C program. The views, opinions and/or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.


DARPA-hard Challenges:

a good way of pushing the envelope in systems R&D

2011

System Architectural Vision for the Cognitive Era

- Mobile (swarm) computing
 - With on-demand support from cloud
- Unstable wireless bandwidth
 - Interaction over ad hoc networks
- Resilient system reconfiguration (on node failure or idle rotation)
- Adaptive abstraction within devices
 - Approximation, sampling, filtering
 - Machine learning acceleration
 - Dynamic voltage and frequency control

- Needs at / near the edge:
 - On-device inference
 - On-device training
 - Low power / voltage (possibly harvested energy)
 - Harsh environment resilience
 - Security against attacks

The domain of mobile cognition

Are there common principles behind architecting resilient, efficient cloud & edge processors?

Meanwhile, the modern age of AI had begun in 2011

- IBM Watson (Deep Q&A, Jeopardy champion)
- Siri (iPhone/Apple) edge NLP

Agile SoC

Programmability

Data security

Privacy

[Tom Rondeau]

[Bob Colwell, Joe Cross, ...]

2013 - 2018

Power Efficiency Revolution for Embedded Computing Technologies $1 \text{ GF/W} \rightarrow 75 \text{ GF/W}$

IBM + Stanford, Harvard, U of Virginia

[Tom Rondeau]

 $2018 \rightarrow 2023/ongoing$

Domain-Specific System on Chip Power-perf, programmability, productivity metrics IBM + Columbia, Harvard, UIUC

 $2021 \rightarrow \text{ongoing}$

(IBM was not part of DPRIVE; but we pursued the same goal, 2022-2025 w/support from DoD/RAMP-C), IBM + Columbia

Executive Summary of ModSim Challenges Faced

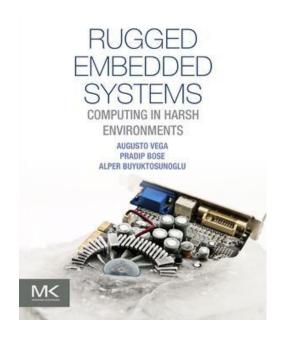
(across the three govt-sponsored R&D projects)

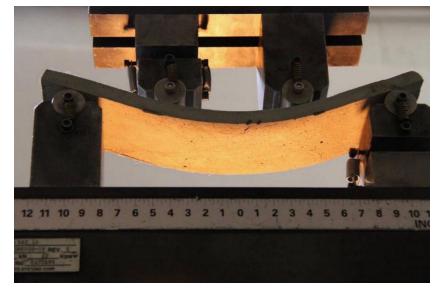
1. Design Verification (and Test!)

- Architects woefully lack tools and metrics to gauge verification complexity in pre-silicon modeling
- Agile SoC design claims avoid factoring in verification time

2. Robust Power Management

- On-chip, workload-driven power management architectures have become increasingly more advanced and sophisticated
- But...ModSim-driven reliability & security guarantees are lacking

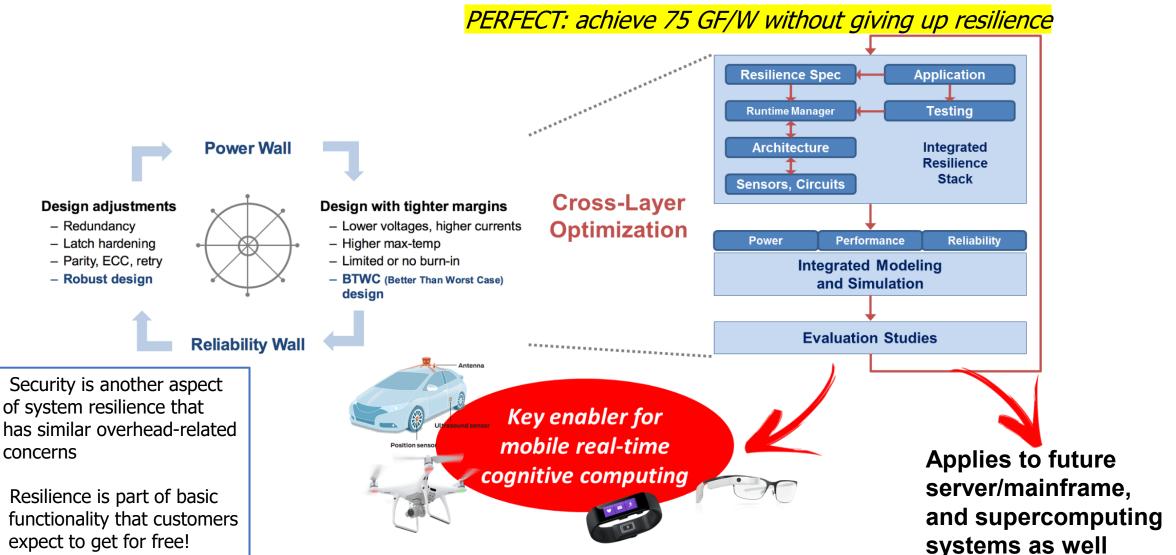

3. Security Metrics and Pre-Silicon Modeling


Largely absent! (Urgent need)

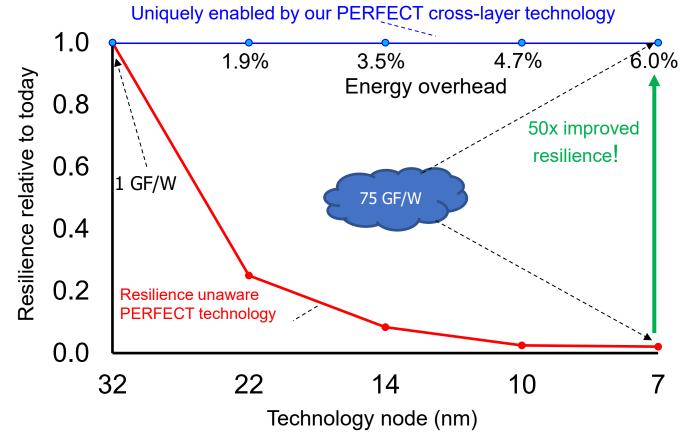
Deficiencies above cause shortfalls in system resilience and inhibit product quality deployment of devised solutions

RESILIENCE

In machine terms, it roughly means *reliable operation under error-prone or harsh environments*


In human (and perhaps AI?) terms, on the other hand....

Resilience, a key component of <u>emotional intelligence</u>, is essentially the ability to "bounce back" from stressful experiences.


https://www.psychologytoday.com/us/blog/comfort-cravings/201308/getting-back-emotional-intelligence-and-resilience

What is *Efficient* Resilience?

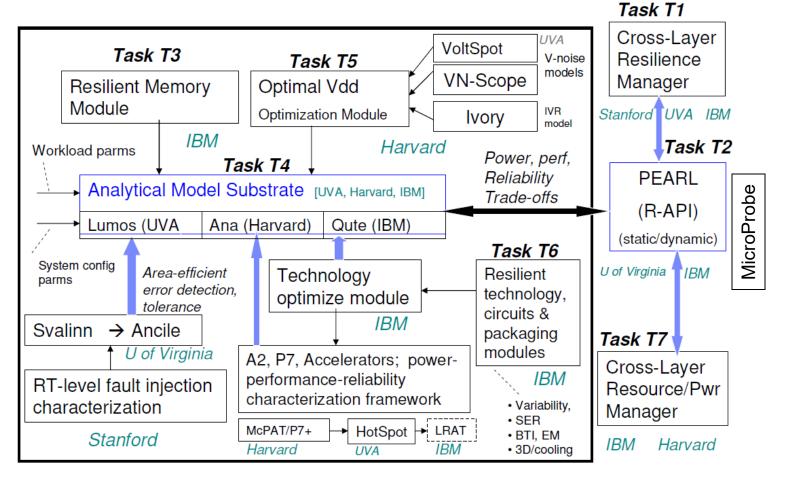
 System design approach to improve efficiency with "guarantees" of operational correctness or quality for a given application workload (even under hostile circumstances)

The ModSim-Driven PERFECTion

- Experimental set-up used:

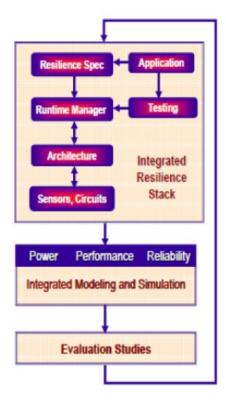
 a full-stack software-hardware
 system consisting of an FPGA
 implementation of an open-source
 processor (LEON3-OpenSparc) with
 matrix multiplication application
- Resilience improvement for current system, with our cross-layer technology was evaluated using fault injection at the latch level
- Cross-layer knobs used:
 Selective latch hardening (circuit),
 parity (logic/microarch),
 control/dataflow checking
 (microarch), algorithm based
 fault tolerance, ABFT (software)

Calculation Assumptions

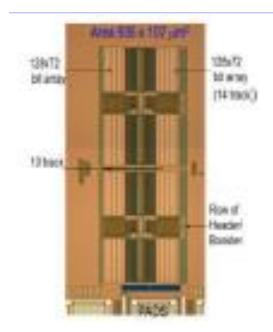

Node	Supply	FIT (shrink)	FIT (voltage)	FIT (total)
32 nm	1.00 v	1x	1x	1x
22 nm	0.85 v	2x	2x	4x
14 nm	0.65 v	4x	8x	12x
10 nm	0.50 v	8x	32x	40x
7 nm	0.50 v	16x	32x	48x

- FIT = unit of failure rate; 1 FIT = 1 failure in a billion hours; system mean time to failure, MTTF ~ 1/FITs
- System FITs will increase with technology node (bad!)
 - Two effects considered here: (a) device size shrinkage per Moore's Law: 2x component count increase per generation; and (b) increase of transient error rates (SER, voltage noise) with voltage reductions required to meet end target of 75 GF/W
- Note: FITs are additive; so last column = sum of the prior two

PERFECT: Overall System Modeling Framework

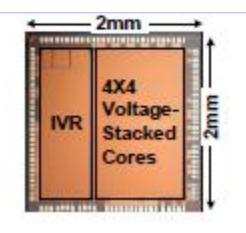

(Delivered in Phase-1; analytical models, open-source software toolset)

SHIVA-1 Framework


SHIVA-2 delivered in Phase-2 includes cycle-accurate processor core and accelerator elements

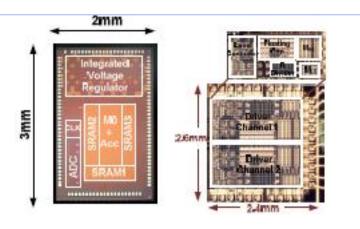
Cross-layer Efficient Reslience Technologies

Latch-accurate SHIVA-3 model in Phase-3 will be fully *design-ready*, with key FPGA component prototype implementations


Test Chips to Validate Modeled PERFECT Innovations in Efficient Resilience; three accepted papers at VLSI Tech. & Circuits Symposia (Kyoto)

Ultra low-Vmin SRAM is a major technology breakthrough – in the quest for 75 GF/W embedded systems

14nm FinFET Based Supply Voltage Boosting Techniques for Extreme Low Vmin Operation


R. V. Joshi, M. Ziegler, H. Wetter, C. Wandel, H. Ainspan, **IBM**

IVR model calibration/& proof of voltage-stacking efficacy is a key new advance in exploring optimal Vdd settings for targeted embedded systems

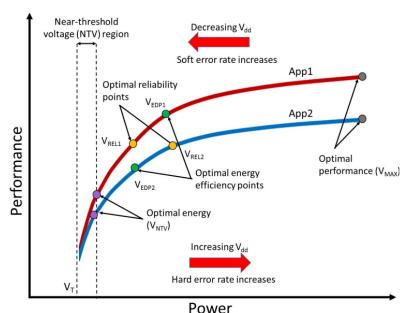
A 16-core voltage-stacking system with an integrated switched-capacitor DC-DC converter

S. K. Lee, T. Tong, X. Zhang, D. Brooks, G-Y. Wei, **Harvard University**

Robo-bees brain SoC chip tests provide validation insights about ultra low power cognitive acceleration

A Multi-Chip System Optimized for Insect-Scale Flapping-Wing Robots

X. Zhang, M. Lok, T. Tong, S. Chaput, S. K. Lee, B. Reagan, H. Lee, D. Brooks, G-Y. Wei, **Harvard University**


A Couple of Key ModSim-Relevant Papers from our PERFECT Project

CLEAR Cross-Layer Resilience: A Retrospective. <u>IEEE Des. Test 42(3)</u>: 74-85 (2025); Eric Cheng et al. (Stanford-led work)

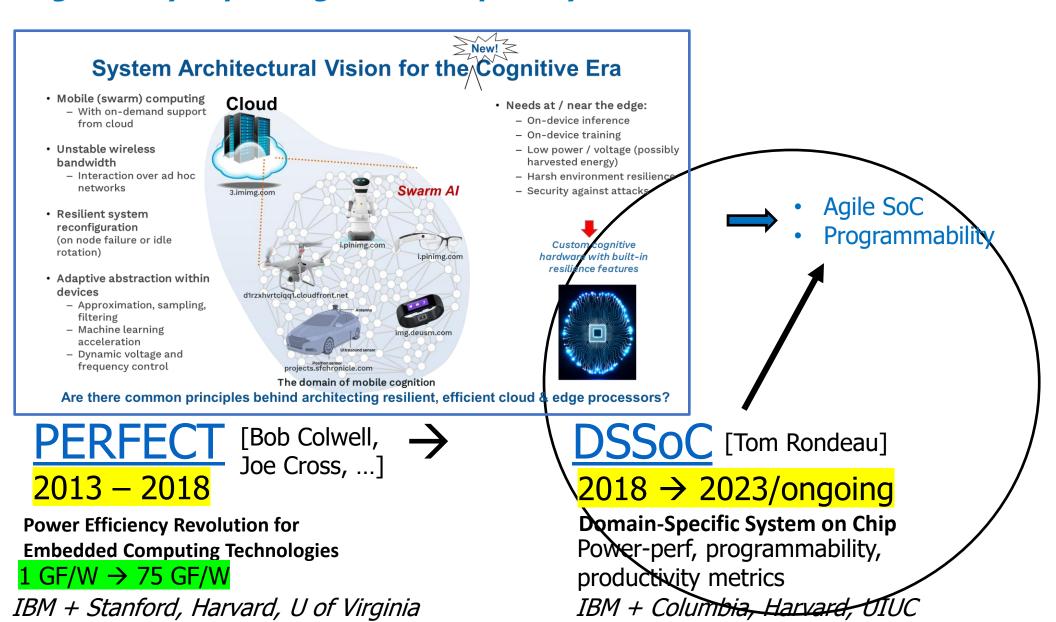
A key ModSim takeaway: architectural abstractions in faultinjection simulation are hazardous, the conclusions can be grossly misleading! **Up to 45x inaccuracy**

BRAVO: Balanced Reliability-Aware Voltage Optimization. <u>HPCA 2017</u>: 97-108

Karthik Swaminathan et al. (IBM work)

ModSim-driven discourse on how to optimize the voltage-frequency operating point to achieve highest performance without violating power and reliability constraints

https://www.youtube.com/watch?v=YvbHXz3lccc


That was 10 years ago!

2025 ModSim | August 2025

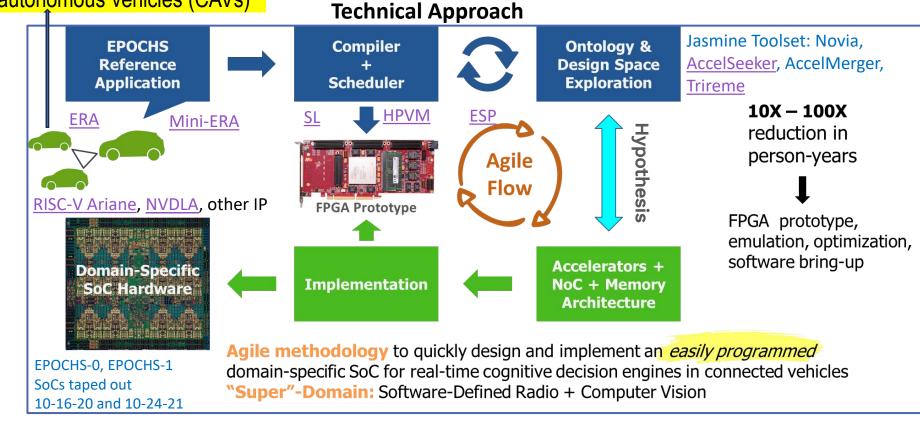
DARPA-hard Challenges:

a good way of pushing the envelope in systems R&D

11

Our recently-completed DARPA (DSSoC) sponsored project:

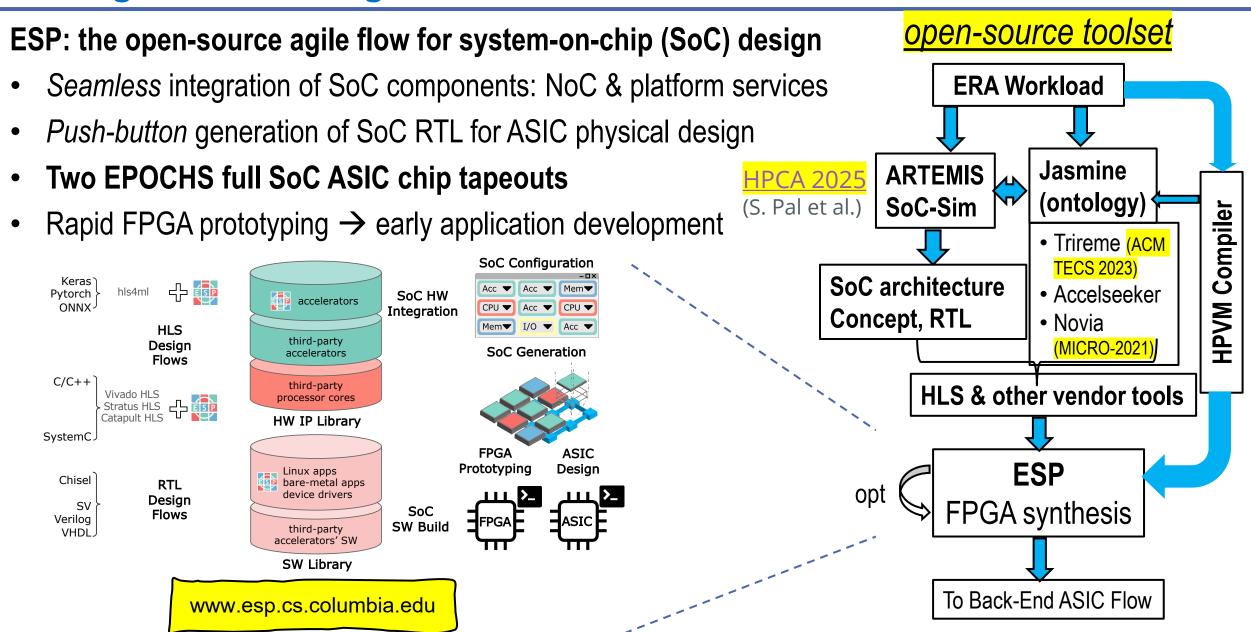
IBM


EPOCHS: Efficient Programmability of Cognitive Heterogeneous Systems

connected autonomous vehicles (CAVs)**

- Agile design of heterogeneous DSSoCs with programmability as a primary consideration
- Open-source software and hardware
- Technology transition: within IBM and outside, including DoD entities

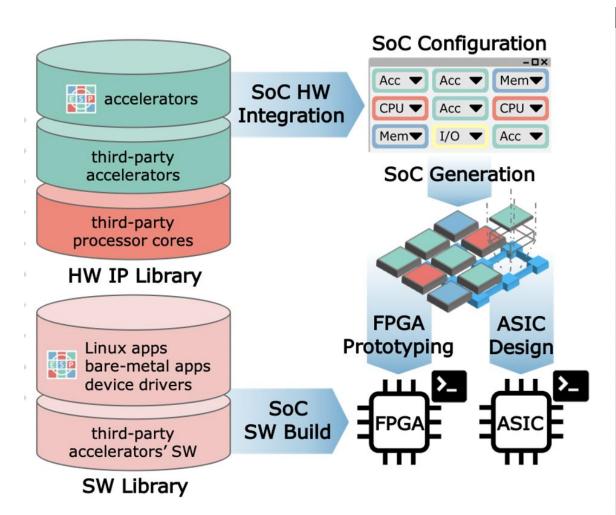
one example
https://mas400.com


Tightly knit collaborative team: IBM + UIUC, Harvard and Columbia

Targeted impact on AI hardware roadmap:

energy reduction, without giving up inferential accuracy

Agile SoC Design Flow: the Heart of EPOCHS ModSim

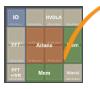




2025 ModSim | August 2025

1:

ESP SoC Flow


EPOCHS/DSSoC: Accomplishments Summary

EPOCHS-0 SoC tapeout

4×4 SoC fabricated

Scaled-out EPOCHS-1 SoC tapeout

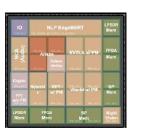
6×6 SoC with new accelerators

Significant design cost mitigation

− 10×−100× reduction in person-years

Hardware-agnostic programming of heterogeneous SoCs

HPVM compiler, smart scheduler...


Open-source ecosystem for collaboration

ERA: github.com/IBM/era HPVM: gitlab.engr.illinois.edu/llvm/hpvm-release

Mini-ERA: github.com/IBM/mini-era STOMP: github.com/IBM/stomp

ESP: www.esp.cs.columbia.edu **Scheduler:** github.com/IBM/scheduler-library

Spandex: github.com/sld-columbia/esp/tree/master/rtl/caches

Chip back from fab + packaging (July 2022) Respin: Nov 2023

ESSCIRC-2022 paper

Simultaneous apps

4 (goal: \geq 2)

Integration time for new accelerators

2 weeks average (goal: ≤ 3 months)

Power

NoC: 7.2% of chip (goal: \leq 40% of chip)

Chip: 240mW – 1.83W (op. range: 0.5V – 1.0V)

Peak frequency at 1.0V: 1.52 GHz

Benefits of acceleration

	FFT	Viterbi
Performance	71×	20×
Energy	233×	56×

Even more amazing results!

A 12nm Linux-SMP-Capable RISC-V SoC with 14 Accelerator Types, Distributed Hardware Power Management and NoC-Based Data Orchestration

Maioc Cassel dos Santos", Tianyu Jiar", Joseph Zuckerman", Martin Cochet", Davide Girl', Erik Loszabo', Karthik Swaminathan", Thiery Tambe', Jeff Jun Zhang', Alper Buyuktosunoglu", Kuan-Lin Chiu', Giuseppe Di Guglielmo', Paolo Mantovani', Luca Piccolboni', Gabriele Tombesi', David Trilla", John-David Wellman', En-Yu Yang', Apova Amamath', Ying Jing', Bakshree Mishra', Joshua Park', Vignesh Suresh', Santa Adve', Pradip Bose', David Brooks', Luca P. Carloni', Kenneth L. Shepard', Gu-Yeon Wel² "These autors have equi controllations.

1 COLUMBIA UNIVERSITY

RVARD

⁴**I** i

ISSCC-2024

ISCA-2024 VLSI Symp.2024

2025 ModSim | August 2025

SCAN ME

EPOCHS-1 SoC Highlights

A 12nm Linux-SMP-Capable RISC-V SoC with 14 Accelerator Types, Distributed Hardware Power Management and NoC-Based Data Orchestration

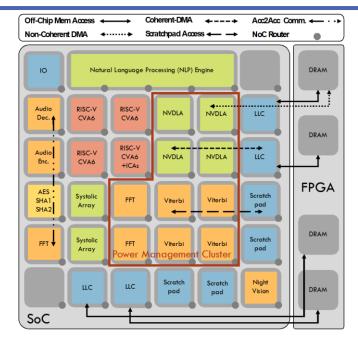
Maico Cassel dos Santos^{1*}, Tianyu Jia^{2*}, Joseph Zuckerman^{1*}, Martin Cochet^{3*}, Davide Giri¹, Erik Loscalzo¹, Karthik Swaminathan³, Thierry Tambe², Jeff Jun Zhang², Alper Buyuktosunoglu³, Kuan-Lin Chiu¹, Giuseppe Di Guglielmo¹, Paolo Mantovani¹, Luca Piccolboni¹, Gabriele Tombesi¹, David Trilla³, John-David Wellman³, En-Yu Yang², Aporva Amarnath³, Ying Jing⁴, Bakshree Mishra⁴, Joshua Park², Vignesh Suresh⁴, Sarita Adve⁴, Pradip Bose³, David Brooks², Luca P. Carloni¹, Kenneth L. Shepard¹, Gu-Yeon Wei²

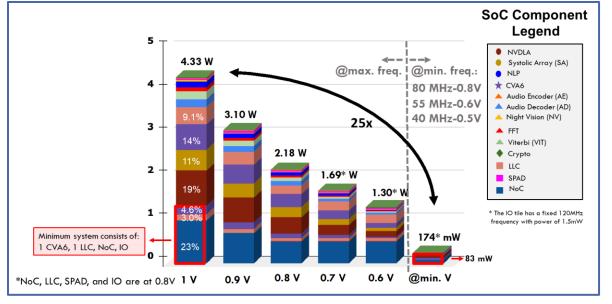
* These authors have equal contributions.

ISSCC-2024 Paper

BlitzCoin: Fully Decentralized Hardware Power Management for Accelerator-Rich SoCs

Martin Cochet¹, Karthik Swaminathan¹, Erik Loscalzo², Joseph Zuckerman², Maico Cassel dos Santos², Davide Giri², Alper Buyuktosunoglu¹, Tianyu Jia³, David Brooks³, Gu-Yeon Wei³, Kenneth Shepard², Luca P. Carloni², and Pradip Bose¹ IBM Research, Yorktown Heights, NY ²Columbia University, New York, NY ³Harvard University, Cambridge, MA

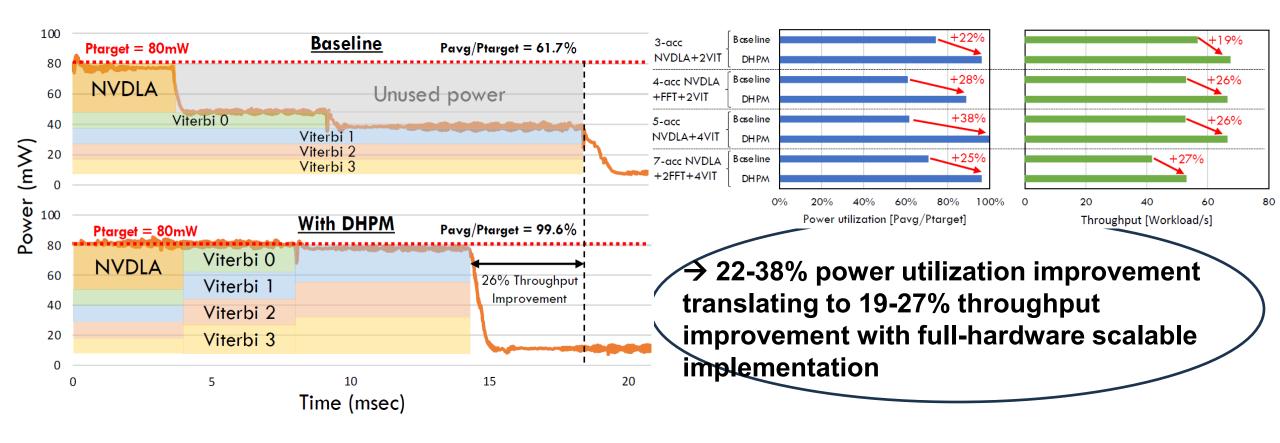

ISCA-2024 paper

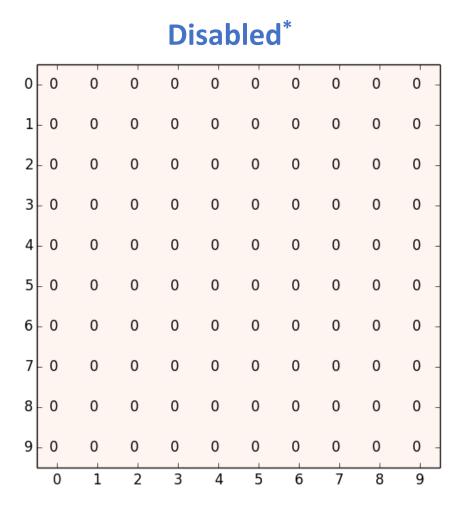

A 400-ns-Settling-Time Hybrid Dynamic Voltage Frequency Scaling Architecture and Its Application in a 22-Core Network-on-Chip SoC in 12-nm FinFET Technology

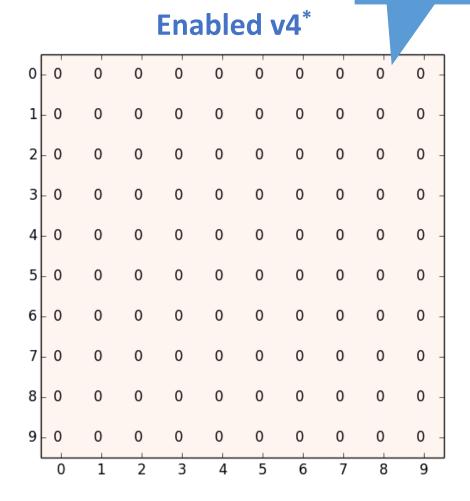
Erik Loscalzo¹, Martin Cochet², Joseph Zuckerman¹, Samira Zaliasl³, Michael Lekas³, Stephen Cahill³, Tianyu Jia⁴, Karthik Swaminathan², Maico Cassel dos Santos¹, Davide Giri¹, Hesam Sadeghi³, Joseph Meyer³, Noah Sturcken³, David Brooks⁴, Gu-Yeon Wei⁴, Luca Carloni¹, Pradip Bose², Kenneth Shepard¹ Columbia University, New York, NY, ²IBM Research, Yorktown Heights, NY, ³Ferric Inc., New York, NY, ⁴Harvard University, Cambridge, MA, E-mail: erik.loscalzo@columbia.edu

VLSI Symp. 2024 paper

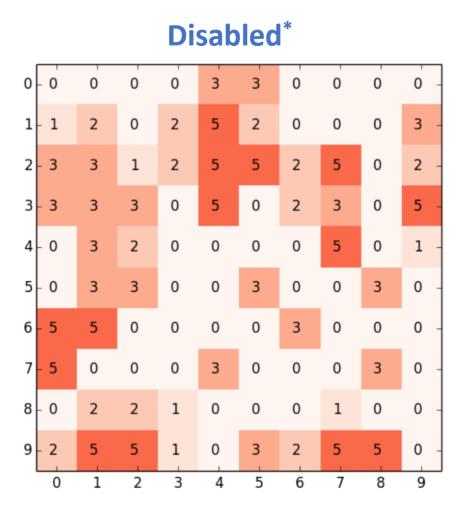
- 64 mm² SoC designed in 12 nm FinFET
- 35 clock domains; 23 power domains
- 8.4 MB on-chip SRAM memory
- Tile-based SoC architecture
- 34 tiles connected by a 6-plane 2-D mesh NoC
- The 74 Tbps NoC provides flexible orchestration of data
- 23 accelerators of 14 different types
- 10 accelerators compose a cluster demonstrating a novel distributed hardware power management scheme
- Designed by a small team of PhD students, postdocs, and industry researchers in
 3 months with ESP, an open-source platform for agile SoC design

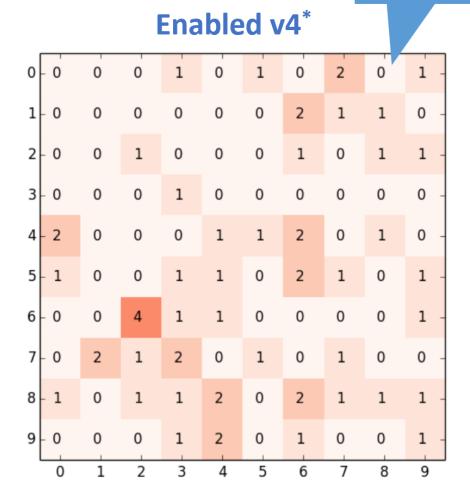



2025 ModSim | August 2025

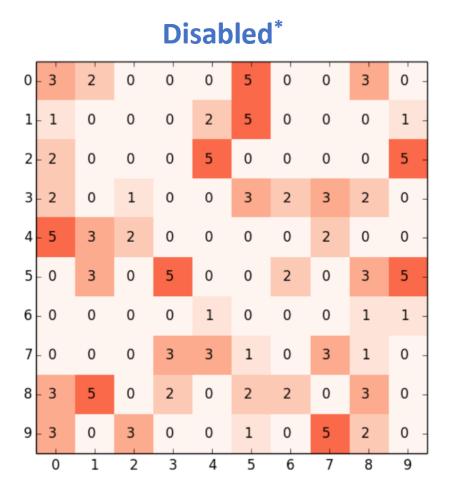

Distributed Hardware Power Management

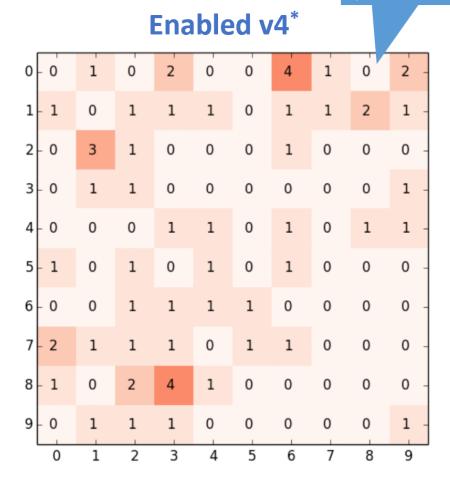
- Concurrent execution of 5 accelerators under fixed 80mW power cap
- Without DHPM (baseline), each tile is allocated a fixed power
- With DHPM, power is dynamically reallocated among tiles


(early-stage concept ModSim)

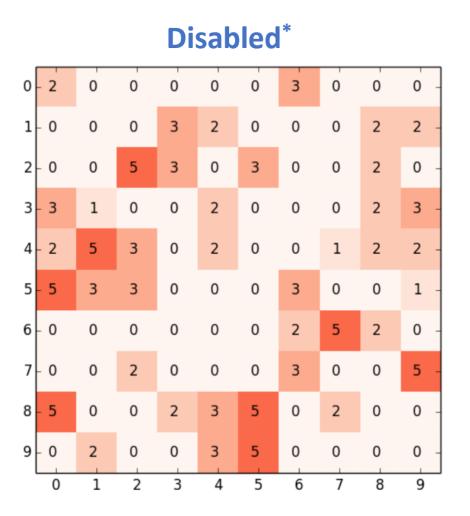


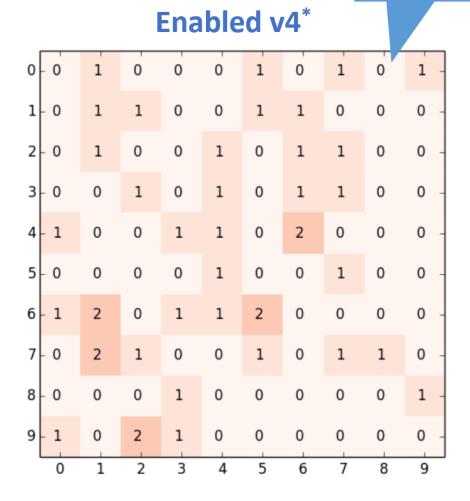
^{*} Animation frames taken every 100 simulation iterations (animations won't show up in pdf, sorry!)


(early-stage concept ModSim)

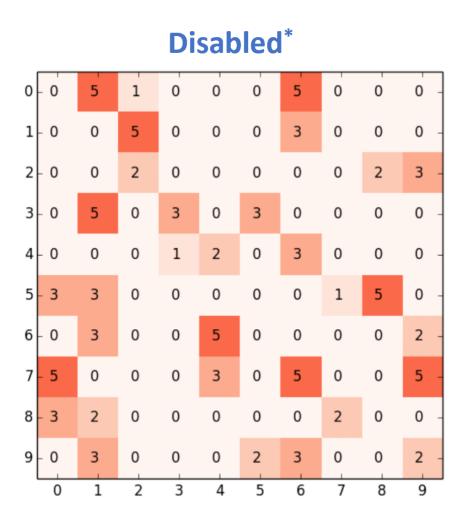


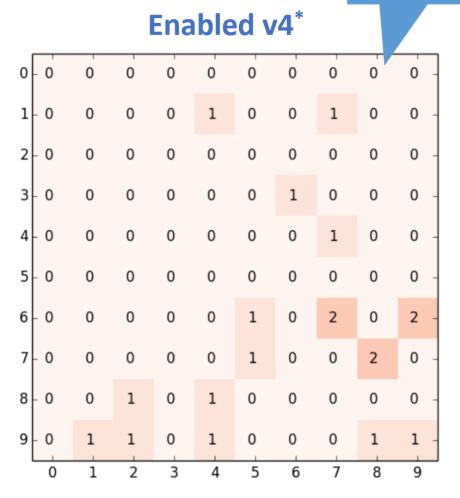
^{*} Animation frames taken every 100 simulation iterations (animations won't show up in pdf, sorry!)


(early-stage concept ModSim)



^{*} Animation frames taken every 100 simulation iterations (animations won't show up in pdf, sorry!)


(early-stage concept ModSim)



^{*} Animation frames taken every 100 simulation iterations (animations won't show up in pdf, sorry!)

(early-stage concept ModSim)

^{*} Animation frames taken every 100 simulation iterations (animations won't show up in pdf, sorry!)

Early Interest in Token-Based Power Management

(12) United States Patent Bose et al.

(10) Patent No.:

US 7,930,578 B2

(45) **Date of Patent:**

Apr. 19, 2011

- METHOD AND SYSTEM OF PEAK POWER **ENFORCEMENT VIA AUTONOMOUS** TOKEN-BASED CONTROL AND MANAGEMENT
- (75) Inventors: **Pradip Bose**, Yorktown Heights, NY (US); Alper Buyuktosunoglu, White Plains, NY (US); Chen-Yong Cher, Port Chester, NY (US); Zhigang Hu, Ridgefield, CT (US); Hans Jacobson, White Plains, NY (US); Prabhakar N. Kudva, New York, NY (US); Vijayalakshmi Srinivasan, New York,

Heights, NY (US)

Assignee: International Business Machines Corporation, Armonk, NY (US)

NY (US); Victor Zyuban, Yorktown

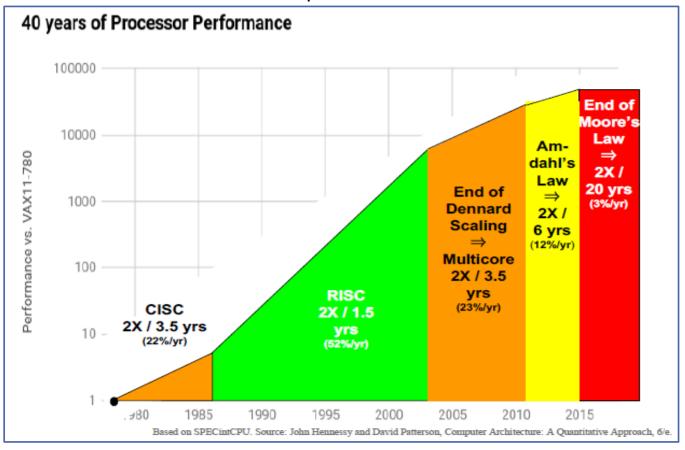
References Cited

U.S. PATENT DOCUMENTS

2007/0028130 A1 * 2007/0050646 A1 * 2008/0250415 A1 *	6/2006 10/2006 2/2007 3/2007 10/2008	Mittal et al. Morgan et al. Narad et al. Schumacher et al. Conroy et al. Illikkal et al. Meier et al.	713/300 710/240 713/320 713/300 718/103
---	--	---	---

^{*} cited by examiner

(56)

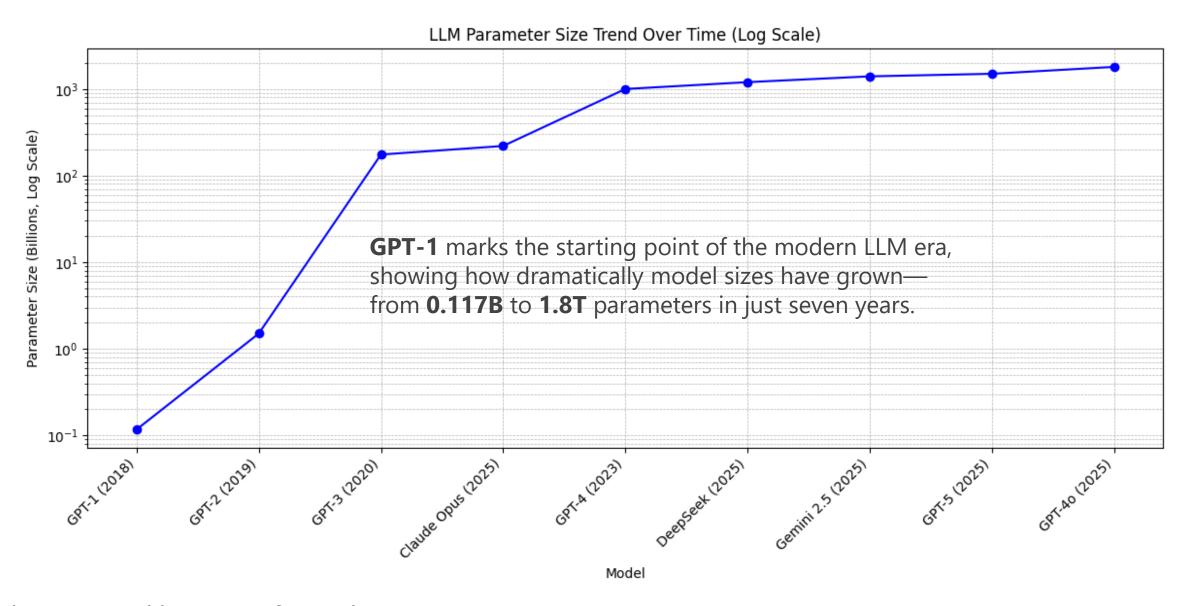

Primary Examiner — Thomas Lee Assistant Examiner — Brandon Kinsey

(74) Attorney, Agent, or Firm — F. Chau & Associates, LLC; William J. Stock, Esq.

ADCTDACT

DSSoC was not just an edge vision or strategy – it applied to server/cloud as well!

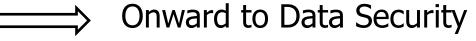
In the late CMOS era, domain specific accelerators will dominate



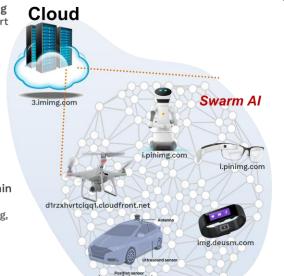
- Primary server refresh at data center may be progressively delayed
- Differentiation (feature, performance)
 via domain-specific accelerators
- Al as a domain changes (scales up) at an astounding rate → see next slide!

Agile hardware-software accelerator system synthesis is key to retaining customer base

- Learn customer workloads
- Design plug-in accelerator offerings; refresh choices every 6 mos.
- Highly automated design flow → small team


Case in Point: Large Language Model (LLM) Parameter Growth Over Time*

^{*} Plot generated by Microsoft Co-Pilot


DARPA-hard Challenges:

a good way of pushing the envelope in systems R&D

- Mobile (swarm) computing
 - With on-demand support from cloud
- Unstable wireless bandwidth
 - Interaction over ad hoc networks
- Resilient system reconfiguration (on node failure or idle rotation)
- Adaptive abstraction within devices
 - Approximation, sampling, filtering
 - Machine learning acceleration
 - Dynamic voltage and frequency control

- Needs at / near the edge:
 - On-device inference
 - On-device training
 - Low power / voltage (possibly harvested energy)
 - Harsh environment resilience
 - Security against attacks

The domain of mobile cognition

Are there common principles behind architecting resilient, efficient cloud & edge processors?

[Tom Rondeau]

 $2018 \rightarrow 2023/ongoing$

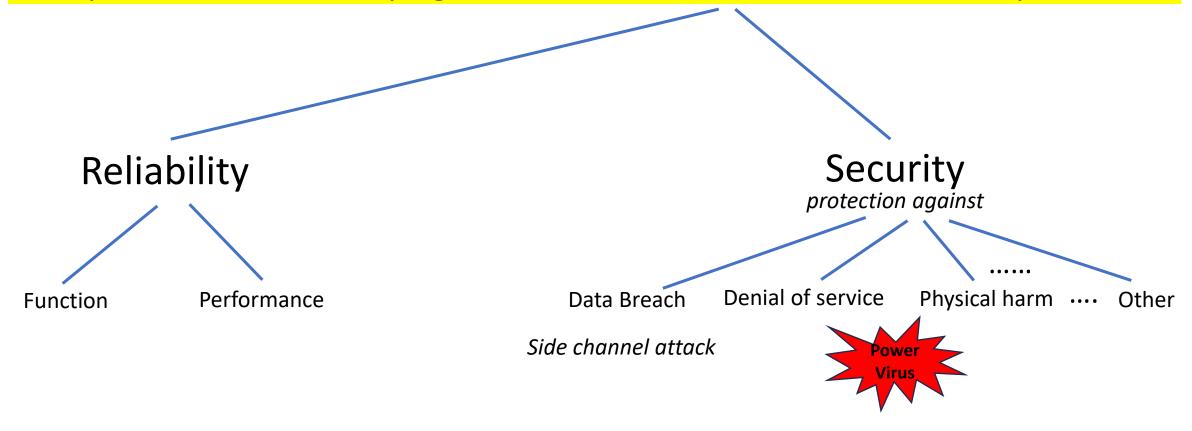
Domain-Specific System on Chip Power-perf, programmability, productivity metrics IBM + Columbia, Harvard, UIUC

Agile SoC Data security **Programmability Privacy** [Tom Rondeau] $2021 \rightarrow \text{ongoing}$ (IBM was not part of DPRIVE; but we pursued the same goal,

2022-2025 W/support from

DoD/RAMP-C), IBM + Columbia₂

[Bob Colwell, Joe Cross, ...]


2013 - 2018

Power Efficiency Revolution for Embedded Computing Technologies $1 \text{ GF/W} \rightarrow 75 \text{ GF/W}$

IBM + Stanford, Harvard, U of Virginia

Beyond the DARPA DSSoC program

Next phase of R&D: worrying about DSSoC resilience at affordable power cost

... in the context of emerging trends in semiconductor and packaging technology

Technology Path to 1 Trillion Transistors

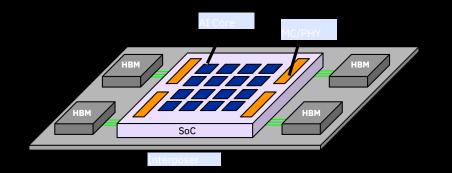
IBM AIU:
Roadmap of
Foundation
Model AI
accelerators

Key technology and enablement needs:


- State-of-the-art foundry CMOS
- State-of-the-art siliconverified IP blocks for support functions (memory controllers, I/O interfaces)
- Chiplets and 3D stacking

AIU 1.0¹

IBM z System Telum-1, Telum-2 announcements; Spyre accelerator at Hot Chips 2022, 2023

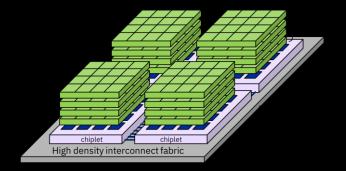

Optimized for FM Inference

1 - Announced October 2022

Optimized for FM Inference and Fine-Tuning,
+ Training

Leverage HBM

OTTO


291mm²

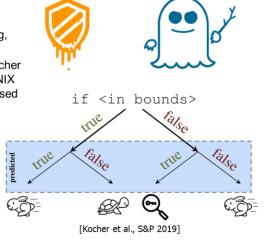
5nm SoC

AIU Next

Optimized for future very large FM Inference + Fine-Tuning + Training

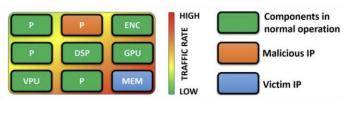
Leverage 3D-stacked memory + chiplet technologies

CHIPS-Act Linked NAPMP Funding Opportunity


A Chiplets/Systems Design Inflection Point **Enabled by Advanced Packaging** Tomorrow: packages more like chips Today: packages more like boards Chip 1 Chip 2 Chip 3 10x wire **NAPMP Materials** and Substrates density & Proposer's Day growing NOFO1 10-layer subµ pitch 2nm, 2 upper metal layers fine line 5 trace layer PCB FOWLP 5 trace layer RDL Estimated wire density in wires/mm axis marks not to scale ≈ 2<u>0</u> $\approx 20.000^2$ ≈ 500 ≈ 6.000 Wire Wire Scarcity **Abundance Chiplets/Systems Tomorrow**³ **Chiplets/Systems Today** With High-speed high-power interface Wire abundance Scale-down wire-like 2D/3D interface at 10 um and lower bond pitches Monolithic wafer-scale 10-100x larger packages **Scale-out** wafer-scale systems that exploit wire abundance Function & physical modularity Board-like integration **Ecosystem** for IP-like heterogeneous chiplet integration [1] P. Chiang, et al, "InFO_oSTechnology for Advanced Chiplet Integration," 2021 IEEE 71st ECTC, San Diego, CA, USA, 2021, pp. 130-135. National Institute of Standards and Technology | U.S. Department of Commerce [2] Illustrative, approximate wire density numbers estimated from current state of the art. [3] NAPMP Vision Paper: The Vision for the CHIPS for America National Advanced PackagingManufacturing Program (nist.gov)

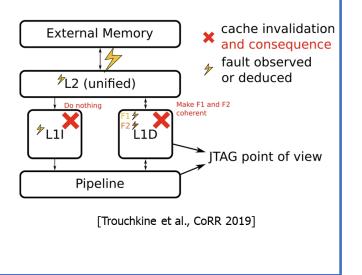
Threats to AI hardware

Side channel attacks Extract sensitive inforr

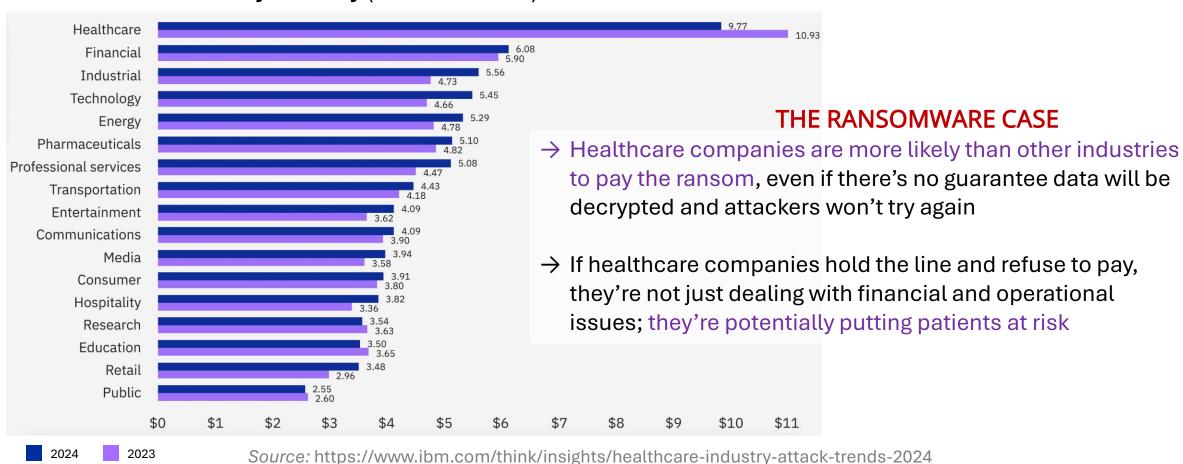

 Extract sensitive information (e.g., data, model parameters) using hardware side channels (timing, power, etc.)

 E.g., cache-based side channels like Spectre [Kocher et al., S&P 2019] and Meltdown [Lipp et al., USENIX 2018] can be used to extract data regularly accessed by a model

Hardware trojans

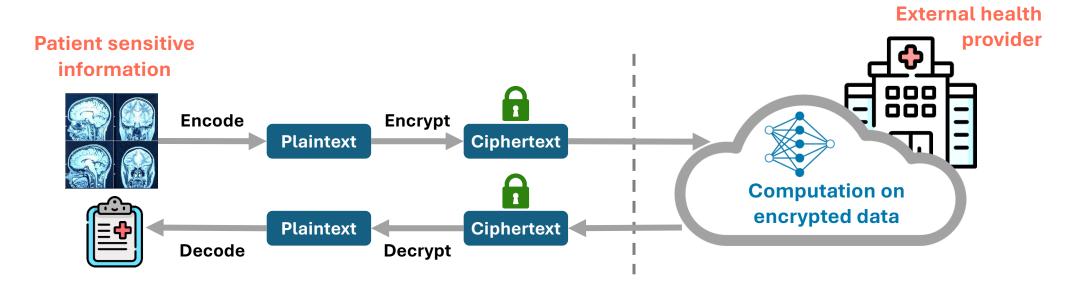

- Insert malicious hardware at design time to impact AI functionality
- E.g., hardware trojan hidden in a unit of an SoC can launch a denial-of-service attack when triggered that prevents AI model from continuing computations

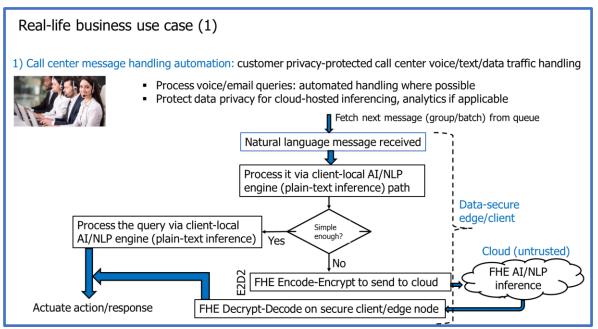
[Charles et al., DATE 2019]

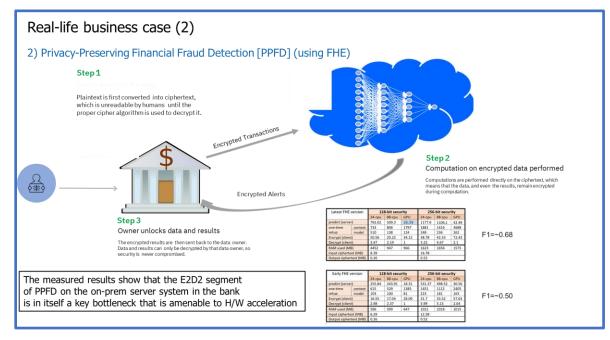

Physical attacks

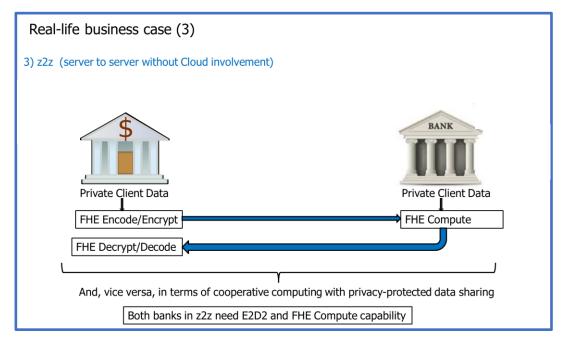
- E.g., laser or voltage manipulation to alter system behavior and functionality
- [Trouchkine et al., CoRR 2019] showed electromagnetic fault injection attacks can be used to target individual subsystems within an SoC

The Need for Privacy-Aware Computing

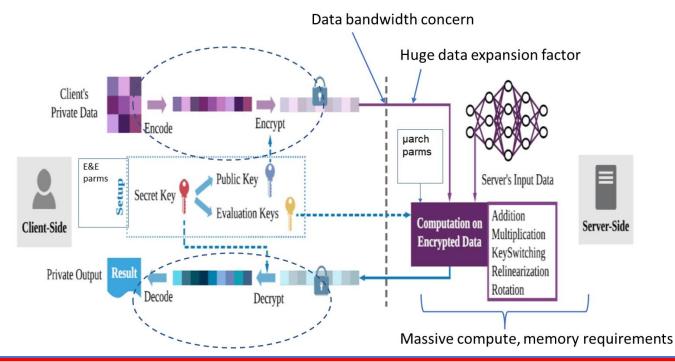

Cost of a data breach by industry (in USD millions)


What is Homomorphic Encryption (HE)?


- Cryptographic technique that enables processing and manipulation of encrypted data
- Traditional crypto algorithms require data to be unencrypted for processing


HOMOMORPHIC ENCRYPTION PIPELINE

Real-life Business Use Cases



- There are many other use cases of course.
- The ones mentioned are representative of IBM's core mainframe business in the financial sector
- The connected autonomous vehicle (CAV) edge sector remains a major area of interest as well

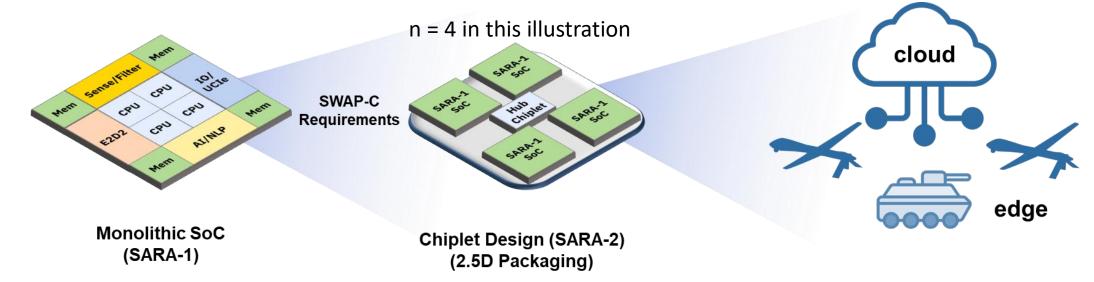
AI/FHE Motivation: DARPA-hard Challenge (hardware acceleration)

The larger context

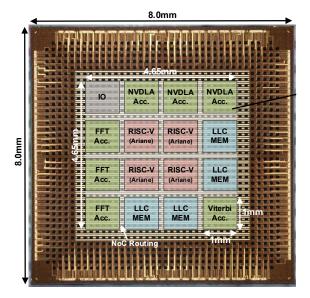
Data-Secure Computing: the End-to-End Picture

The Encode-Encrypt, Decrypt-Decode (E2D2) client-side task is also important!

- Poster child application to utilize the emerging trends in semiconductor and packaging technology (e.g. chiplets/3DHI)
- Aligned with semiconductor business strategy; linked also to the government's CHIPS ACT related thrusts
- 1000x 500000x acceleration needed to meet performance (e.g. real-time) needs, as addressed in the DARPA DPRIVE program

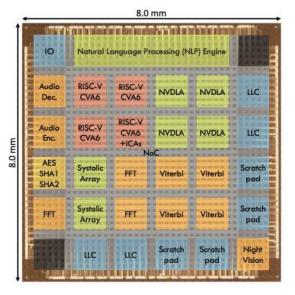

We started up this project in January 2022 with the above challenge and business opportunity in mind

- The initial (primary) focus is on AI-embedded transactional workloads like financial fraud detection (FFD).
- But there are many other edge-cloud application workloads (with privacy-protection needs) that map into this space (e.g.
 the cloud-backed connected autonomous vehicular space just mentioned).


AI/FHE Hardware Acceleration: Enabling Privacy-Protected Edge-to-Cloud AI Computation

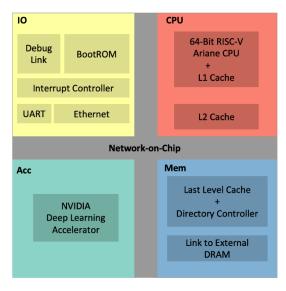
Our design strategy and long-term research vision:

- Leverage our prior agile SoC design methodology (EPOCHS) to implement a AI/FHE SoC (chiplet) in order to demonstrate basic viability for a class of AI-centric inference workloads with an n-chiplet SiP solution (where n = 1, 2 or 4 in the first generation)
 - ✓ Individual chiplet size (area) is determined by yield (cost) constraints for a new technology node
 - ✓ Integrated UCIe interface allows scaled-up system solution with multiple chiplets and on-package memory modules (DDR or HBM)
- 2. Scalable solution: start with an edge E2D2 capability, scale up to a cloud AI/FHE compute capability
 - Leverage 3DHI and chiplet technology to meet memory capacity and bandwidth requirements


Circling back to emphasize the benefit of our agile SoC design methodology driven by Columbia's ESP: Impressive Productivity Gain

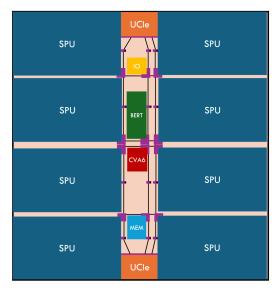
EPOCHS-0

Oct. 2020


2 RTL/Verif. Engineers 6 PD Engineers

EPOCHS-1

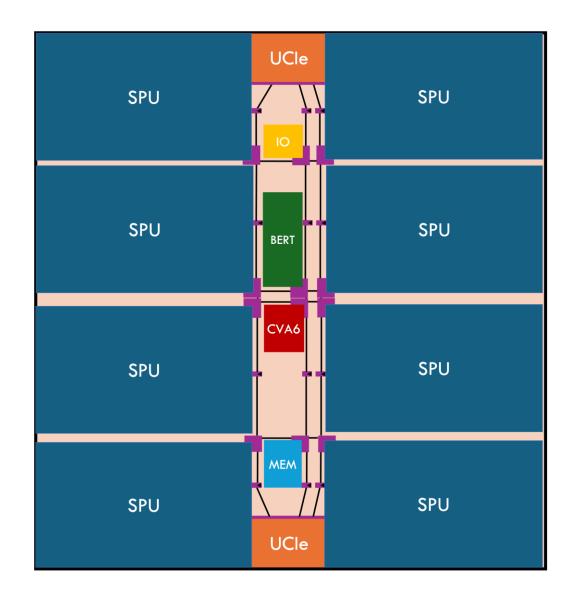
Nov. 2022


3 RTL/Verif. Engineers
6 PD Engineers

Mini SoC

Jan. 2024

1 RTL/Verif. Engineer 6 PD Engineers


SARA-1

Sep. 2025

9 RTL/Verif. Engineers6 PD Engineers


SARA-1

- Same advanced technology node
- 8 copies of the SARA Processing Unit (SPU)
 - Programmable accelerator
 - Large (>10mm²)
- Application has complex datadependency patterns
 - One-to-many communication
- Chiplet-based w/ UCle
- Heterogeneous tile sizes complicate physical design
- Design completes in September 2025

Motivation for pre-silicon security analysis

Typical security cycle

However, it can be expensive and less effective to implement mitigation solutions in post-silicon stages of design or after production.

- Can we prioritize security during early design cycle stages?
 - Power, area, and performance are prioritized but can we include security in these early design considerations as well?
 - How can vulnerabilities be found in pre-silicon stages?
 - How can security be measured?
 - Can security evaluation be automated early in the design cycle to ease designer effort?

Focus on side channel analysis from early design stages

Pre-silicon: design cycle stages prior to taping out chip

Post-silicon: taped out chip stages

Our approach to designing systems with power side channel leakage possibility in mind

- Develop a **metric** to quantify how susceptible a design is to power side-channel information leakage
 - E.g., 0 to 1 values
 - 0 = no information leakage
 - 1 = fully vulnerable

Iterate on design to reach desired security level

Develop system design and determine desired security level

Build approximate power profile

Use simulator to find how susceptible design is to side-channel leakage cases

Find possible cases where power side-channels may lead to observable information leakage

Benefits of our approach

Our ideas can be applied based on the needs of the system

• E.g., systems handling sensitive data may prioritize secure design over performance

Our approach improves and eases secure design efforts

Security

Tradeoff

Triangle

• E.g., side-channel vulnerability evaluation can be easily automated

Other security considerations may be brought to silicon design stages

• E.g., other physical design phenomena such as Performance netic emanations may be similarly modeled and eval

Power

Executive Summary of ModSim Challenges Faced

(across the three govt-sponsored R&D projects)

1. Design Verification (and Test!)

Don't forget the SDC scare!

- Architects woefully lack tools and metrics to gauge verification complexity in pre-silicon modeling
- Agile SoC design claims avoid factoring in verification time

2. Robust Power Management

- On-chip, workload-driven power management architectures have become increasingly more advanced and sophisticated
- But...ModSim-driven reliability & security guarantees are lacking

3. Security Metrics and Pre-Silicon Modeling

Largely absent! (Urgent need)

Deficiencies above cause shortfalls in system resilience and inhibit product quality deployment of devised solutions

DFV/DFT and ModSim thereof

PERFECT: Efficient Resilience In Embedded Computing

Thank You!

Pradip Bose, Augusto Vega, IBM T. J. Watson Research Center
Sarita Adve, Vikram Adve, Sasa Misailovic, University of Illinois at Urbana-Champaign
Luca Carloni, Ken Shepard, Columbia University
David Brooks, Gu-Yeon Wei, Vijay Janapa Reddi, Harvard University
Kevin Skadron, Mircea Stan, University of Virginia