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AI Foundation Models are Expensive

EpochAI

● Transformers are the workhorse: Scaling properties, flexible, SOTA results

https://epochai.org/blog/tracking-large-scale-ai-models


Large-scale AI Models are Growing in Science

● Range of scientific simulation tasks is enormous
○ Weather/climate, fusion, seismic, fluids, proteins, material sciences, high-energy physics

● Surge of transformer models as possible foundations for downstream tasks
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Transformers in Science may Operate in Different Regimes

● A Large Language Model (LLM) example: GPT3
○ #Parameters can be huge ~ billions to trillions of parameters 
○ Process a sequence of O(1K) tokens (usually 2K, 4K, 8K tokens in pre-training)
○ MLP FLOPs are large (compared to S/A)
○ GPT3-1T on 3072 A100 GPUs takes 84 days to train on 450B tokens
○ Understood reasonably well

Sequence of tokens Sequence of tokens

Self
Attention MLP

x Depth

Token Visualizer, 
Megatron-LM

https://tokens-lpj6s2duga-ew.a.run.app/
https://people.eecs.berkeley.edu/~matei/papers/2021/sc_megatron_lm.pdf


Transformers in Science may Operate in Different Regimes

● A Scientific Surrogate example: Transformer for global weather forecasting
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Transformers in Science may Operate in Different Regimes

● A Scientific Surrogate example: Transformer for global weather forecasting
○ #Parameters are moderate ~ million to billion parameters 
○ Process a sequence of O(1M) tokens (can be compressed to O(100K) tokens)
○ S/A FLOPs are large (compared to MLP)
○ A small model could be more expensive than a trillion parameter LLM!
○ [?] Days on [?] GPUs on [?] tokens. Less understood
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https://science.osti.gov/-/media/funding/pdf/Awards-Lists/2024/3264-AI-for-SCIENCE-Awards-List-spreadsheet-sorted-BY-PROJECT.pdf
https://science.osti.gov/-/media/funding/pdf/Awards-Lists/2024/3264-AI-for-SCIENCE-Awards-List-spreadsheet-sorted-BY-PROJECT.pdf
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○ #Parameters are moderate ~ million to billion parameters 
○ Process a sequence of O(1M) tokens 
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Transformers in Science may Operate in Different Regimes

● A Scientific Surrogate example: 
○ #Parameters are moderate ~ million to billion parameters 
○ Process a sequence of O(billions) tokens 
○ S/A FLOPs are large (compared to MLP)
○ A small model could be more expensive than a trillion parameter LLM!
○ [?] Days on [?] GPUs on [?] tokens. Less understood
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https://science.osti.gov/-/media/funding/pdf/Awards-Lists/2024/3264-AI-for-SCIENCE-Awards-List-spreadsheet-sorted-BY-PROJECT.pdf
https://www.exascaleproject.org/eqsim-shakes-up-earthquake-research-at-the-exascale-level/


Transformers in Science may Operate in Different Regimes

● A Scientific Surrogate example: 
○ #Parameters are moderate ~ million to billion parameters 
○ Process a sequence of O(billions) tokens 
○ S/A FLOPs are large (compared to MLP)
○ A small model could be more expensive than a trillion parameter LLM!
○ [?] Days on [?] GPUs on [?] tokens. Less understood
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ACCEL2

https://science.osti.gov/-/media/funding/pdf/Awards-Lists/2024/3264-AI-for-SCIENCE-Awards-List-spreadsheet-sorted-BY-PROJECT.pdf
https://science.osti.gov/-/media/funding/pdf/Awards-Lists/2024/3264-AI-for-SCIENCE-Awards-List-spreadsheet-sorted-BY-PROJECT.pdf
https://arxiv.org/pdf/2407.04473


Performance Modeling can be Valuable 

● Understand Costs/Bottlenecks and analyze Sensitivity of Performance
○ What bottlenecks w.r.t parallelization strategies?
○ Different Transformer regimes (LLMs vs Science)?
○ Different system hardware (specifically network/NVLINK effects)?
○ Different system scales (10s vs 1000s of accelerators)?



Performance Modeling can be Valuable 

● Understand Costs/Bottlenecks and analyze Sensitivity of Performance
○ What bottlenecks w.r.t parallelization strategies?
○ Different Transformer regimes (LLMs vs Science)?
○ Different system hardware (specifically network/NVLINK effects)?
○ Different system scales (10s vs 1000s of accelerators)?

● Value-add for:
○ Users (researchers, engineers)

■ Optimal ways to parallelize AI models? Architecture search with performance in mind?
○ Systems design

■ Which aspects of the HPC system are crucial? Alternate design choices?
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Analytical and Parameterized Models can be Valuable
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SC24, Github

AMPeD: An Analytical Model for Performance in Distributed Training of Transformers, ISPASS23
Calculon. A Methodology and Tool for High-Level Co-Design of Systems and Large Language Models. SC23
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https://dl.acm.org/doi/10.1145/3581784.3607102
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Analyze Varying Needs for Transformers in Science 

● Long sequence lengths may necessitate 4D parallelism
● Different choices for Matrix Multiplies: SUMMA also possible

SUMMA: Scalable Universal Matrix Multiplication Algorithm, Link

https://www.netlib.org/lapack/lawnspdf/lawn96.pdf
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Two Transformer Variants on Different Systems

● Large GPT3 (1T, 2K) on a few trillion tokens 
● Large ViT (80B, 250K) on decades of weather data 



Two Transformer Variants on Different Systems

● Three NVIDIA GPU generations: A100, H200, B200
● Three NVLINK/NVL through NVSWITCH domain 

sizes: 4, 8, 64

● Large GPT3 (1T, 2K) on a few trillion tokens 
● Large ViT (80B, 250K) on decades of weather data  

NVSWITCH

https://developer.nvidia.com/blog/nvidia-nvlink-and-nvidia-nvswitch-supercharge-large-language-model-inference/


Provides a High-level View of Scaling Behavior
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Larger NVLINKs Favor High Data Parallelism
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Placement of GPUs Matters

DP GPUs allocated to 
NVLINK 



Placement of GPUs Favor Data Parallelism for Large NVL



Transformer in Science is More Sensitive to the Network

NVLINK 
effects
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Larger NVLINK Drops Communication Costs
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● Validated time models on the Perlmutter 
supercomputer
○ 4-way NVLINK domain



Validation with Megatron-LM

● Validated time models on the Perlmutter 
supercomputer
○ 4-way NVLINK domain

● Validated throughput numbers on 512 GPUs 
○ GPT3 (175B) and ViT (32K)

● ~10% errors in iteration time
○ Controlled GPU placement with Megatron flags
○ Overlap flags, FlashAttention, other optimizations in 

sync with model
○ Validated sub-optimal configurations as well

● SUMMA validation challenging
○ ColossalAI in future work

Megatron-LM & Megatron-Core: GPU optimized techniques for training transformer 
models at-scale, NVIDIA, Github

https://github.com/hpcaitech/ColossalAI
https://github.com/NVIDIA/Megatron-LM/tree/main


Some Key Takeaways 
● Placement of GPUs on high-bandwidth domain affects the optimal 

parallelism 
○ Software codebases to be flexible to this
○ NVLINK domains help expose “easier” parallelisms from the software POV

● LLMs benefit from large NVLINKs at pre-training scales
○ Fine-tuning scales can leverage other parallelization strategies to be less sensitive
○ HBM capacity is underutilized for the largest scales

● Science Transformers benefit uniformly from NVLINK due to memory 
pressure
○ Demand 4D parallelism (data + pipeline + 2D tensor + optimizer sharding)
○ Capacity is more critical (High capacity, low bandwidth alternatives?)

● 4D/ND (SUMMA/context) parallelism can give you good speedups



Thank You!
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