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e Transformers are the workhorse: Scaling properties, flexible, SOTA results
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https://epochai.org/blog/tracking-large-scale-ai-models
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e Range of scientific simulation tasks is enormous
o Weather/climate, fusion, seismic, fluids, proteins, material sciences, high-energy physics

e Surge of transformer models as possible foundations for downstream tasks
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Transformers in Science may Operate in Different Regimes
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e A Large Language Model (LLM) example: GPT3
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e A Large Language Model (LLM) example: GPT3

#Parameters can be huge ~ billions to trillions of parameters

Process a sequence of O(1K) tokens (usually 2K, 4K, 8K tokens in pre-training)
MLP FLOPs are large (compared to S/A)

GPT3-1T on 3072 A100 GPUs takes 84 days to train on 450B tokens
Understood reasonably well

o O O O O
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https://people.eecs.berkeley.edu/~matei/papers/2021/sc_megatron_lm.pdf

Transformers in Science may Operate in Different Regimes
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e A Scientific Surrogate example: Transformer for global weather forecasting
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Transformers in Science may Operate in Different Regimes
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e A Scientific Surrogate example: Transformer for global weather forecasting
#Parameters are moderate ~ million to billion parameters

Process a sequence of O(1M) tokens (can be compressed to O(100K) tokens)

S/A FLOPs are large (compared to MLP)

A small model could be more expensive than a trillion parameter LLM!

[?] Days on [?] GPUs on [?] tokens. Less understood
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https://science.osti.gov/-/media/funding/pdf/Awards-Lists/2024/3264-AI-for-SCIENCE-Awards-List-spreadsheet-sorted-BY-PROJECT.pdf
https://science.osti.gov/-/media/funding/pdf/Awards-Lists/2024/3264-AI-for-SCIENCE-Awards-List-spreadsheet-sorted-BY-PROJECT.pdf
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#Parameters are moderate ~ million to billion parameters

Process a sequence of O(1M) tokens

S/A FLOPs are large (compared to MLP)

A small model could be more expensive than a trillion parameter LLM!
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Transformers in Science may Operate in leferent Regimes
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e A Scientific Surrogate example:

#Parameters are moderate ~ million to billion parameters

Process a sequence of O(billions) tokens

S/A FLOPs are large (compared to MLP)

A small model could be more expensive than a trillion parameter LLM!
[?] Days on [?] GPUs on [?] tokens. Less understood
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#Parameters are moderate ~ million to billion parameters

Process a sequence of O(billions) tokens

S/A FLOPs are large (compared to MLP)

A small model could be more expensive than a trillion parameter LLM!
[?] Days on [?] GPUs on [?] tokens. Less understood
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Performance Modeling can be Valuable

e Understand Costs/Bottlenecks and analyze Sensitivity of Performance
o  What bottlenecks w.r.t parallelization strategies?
o Different Transformer regimes (LLMs vs Science)?
o Different system hardware (specifically network/NVLINK effects)?
o Different system scales (10s vs 1000s of accelerators)?
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Performance Modeling can be Valuable

e Understand Costs/Bottlenecks and analyze Sensitivity of Performance
o  What bottlenecks w.r.t parallelization strategies?
o Different Transformer regimes (LLMs vs Science)?
o Different system hardware (specifically network/NVLINK effects)?
o Different system scales (10s vs 1000s of accelerators)?

e Value-add for:
o Users (researchers, engineers)

m Optimal ways to parallelize Al models? Architecture search with performance in mind?
o Systems design

m  Which aspects of the HPC system are crucial? Alternate design choices?
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Al Performance Modeling is Challenging
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Analytical and Parameterized Models can be Valuable

AMPeD: An Analytical Model for Performance in Distributed Training of Transformers, ISPASS23
Calculon. A Methodology and Tool for High-Level Co-Design of Systems and Large Language Models. SC23

Comprehensive Performance Modeling and System Design Insights for Foundation Models, PMBS,
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Analytical and Parameterized Models can be Valuable
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Analytical and Parameterized Models can be Valuable
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Analytical and Parameterized Models can be Valuable
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Analyze Varying Needs for Transformers in Science

e Counting FLOPs, communication volume is dependent on the parallelism
e Long sequence lengths may necessitate N-D parallelism
Operation | Partitioned Tenser-Shapes | Type | Vol
| 1D TP over(n; GPUs)
SAN—__“~"
X = LN(X) X :(ble), X: (b ,e), AG | ble
Q=XWq Q.(b,n,,eh) Wq : (e,e) 2 0
A=QKT | A: (b,n,ll)K (b, leh) = 0
S = AV SR T (b,n L en) : 0
Y =SW, Y: (b, ;,e), Wp: (%,€) RS | ble
MLP
Y = LN(Y) Y :(ble),Y:(bLe), AG | ble
Z=YW; Z: (b1, f/ni), Wy : (e,f—) - 0
X =ZW, X:(b-L,e), Wa:(Le) RS | ble
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Analyze Varying Needs for Transformers in Science

e Counting FLOPs, communication volume is dependent on the parallelism
e Long sequence lengths may necessitate N-D (4D) parallelism
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Analyze Varying Needs for Transformers in Science

e Long sequence lengths may necessitate 4D parallelism
e Different choices for Matrix Multiplies: SUMMA also possible

np—1

C= Z ArB~

Algorithm 1 C = AB using SUMMA

1: Input: Aijs B”

2: Output: C;;

3: C=0

4: for k =0—>np — 1 do

5: for i = 0,...,n; — 1 Broadcast A¥ to i*" process row
6: for j =0,...,n2 — 1 Broadcast B to 4" process col
7k Cij = C@'j 0N AfB;

8: end for

9: return C;;

SUMMA: Scalable Universal Matrix Multiplication Algorithm, Link
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https://www.netlib.org/lapack/lawnspdf/lawn96.pdf

Analyze Varying Needs for Transformers in Science
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e Long sequence lengths may necessitate 4D parallelism
e Different choices for Matrix Multiplies: SUMMA also possible
Operation | Partitioned Tens, s | Type | Vol
| 2D TP with SUMMA ovex(n; X ng prid of GPUs |
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SUMMA: Scalable Universal Matrix Multiplication Algorithm, Link
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Two Transformer Variants on Different Systems

e Large GPT3 (1T, 2K) on a few trillion tokens
e Large ViT (80B, 250K) on decades of weather data
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Two Transformer Variants on Different Systems

e Large GPT3 (1T, 2K) on a few trillion tokens
e Large ViT (80B, 250K) on decades of weather data

Multi-GPU Configuration with NVSwitch

e Three NVIDIA GPU generations: A100, H200, B200 rﬁt”j
e Three NVLINK/NVL through NVSWITCH domain mary R i R e TR e
sizes: 4, 8, 64 =]
NVSWITCH
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https://developer.nvidia.com/blog/nvidia-nvlink-and-nvidia-nvswitch-supercharge-large-language-model-inference/

Provides a High-level View of Scaling Behavior
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Provides a High-level View of Scaling Behavior
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Exposes Bottlenecks and Optimal Parallelism

Optimal Parallelization Strategy for gpt3_1T on b200, NVL=8
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Optimal Parallelization Strategy for gpt3_1T on b200, NVL=8
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Exposes Bottlenecks and Optimal Parallelism
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Larger NVLINKs Favor High Data Parallelism

Optimal Parallelization Strategy for gpt3_1T on b200, NVL=64
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Probe the Model to Get Deeper Insights

TP Sweep for gpt3_1T on b200, NVL=8
Total GPUs=16384, Fixed PP=64, Micro Batch=1
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Probe the Model to Get Deeper Insights

TP Sweep for gpt3_1T on b200, NVL=8
Total GPUs=16384, Fixed PP=64, Micro Batch=1
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Placement of GPUs Matters

PP Sweep for gpt3_1T on b200, NVL=8
Total GPUs=16384, Fixed TP=8, Micro Batch=1
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Placement of GPUs Matters

PP Sweep for gpt3_1T on b200, NVL=8
Total GPUs=16384, Fixed TP=8, Micro Batch=1
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Placement of GPUs Matters

PP Sweep for gpt3_1T on b200, NVL=8
Total GPUs=16384, Fixed TP=8, Micro Batch=1
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Placement of GPUs Favor Data Parallelism for Large NVL

PP Sweep for gpt3_1T on b200, NVL=64
Total GPUs=16384, Fixed TP=8, Micro Batch=1
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Transformer in Science is More Sensitive to the Network

A100, NVL=4
A100, NVL=8
A100, NVL=64
H200, NVL=4
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Long Sequences Need 4D Parallelism

Optimal Parallelization Strategy for vit on b200, NVL=8
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Long Sequences Need 4D Parallelism

Optimal Parallelization Strategy for vit on b200, NVL=8
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Larger NVLINK Drops Communication Costs

Optimal Parallelization Strategy for vit on b200, NVL=64
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Validation with Megatron-LM

e Validated time models on the Perlmutter — 5
*  Empirical (NVL = 4) /
supercomputer 10-1- Theoretical (NVL = 4) /,®
o Empirical (NVL = 2) o

o 4-way NVLINK domain . /
---- Theoretical (NVL = 2) 3

1073 101 10!
Communication volume (GB)
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Validation with Megatron-LM

e Validated time models on the Perlmutter

*  Empirical (NVL = 4) /O
supercomputer 10~/ Theoretical (NVL = 4) ,,‘”
o  4-way NVLINK domain © Empirical (NVL =2) — 2
. ---- Theoretical (NVL = 2) 3
e Validated throughput numbers on 512 GPUs :
— -2

o GPT3(175B) and ViT (32K) z 10
e ~10% errors in iteration time 1=

o Controlled GPU placement with Megatron flags 10-3

o Overlap flags, FlashAttention, other optimizations in

sync with model

o Validated sub-optimal configurations as well 1041
e SUMMA validation challenging 10~ 10~ 10

o ColossalAl in future work Communication volume (GB)

~
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Megatron-LM & Megatron-Core: GPU optimized techniques for training transformer
models at-scale, NVIDIA, Github
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https://github.com/hpcaitech/ColossalAI
https://github.com/NVIDIA/Megatron-LM/tree/main

Some Key Takeaways

e Placement of GPUs on high-bandwidth domain affects the optimal

parallelism
o Software codebases to be flexible to this
o NVLINK domains help expose “easier” parallelisms from the software POV
e LLMs benefit from large NVLINKSs at pre-training scales
o Fine-tuning scales can leverage other parallelization strategies to be less sensitive
o HBM capacity is underutilized for the largest scales

e Science Transformers benefit uniformly from NVLINK due to memory
pressure

o Demand 4D parallelism (data + pipeline + 2D tensor + optimizer sharding)
o Capacity is more critical (High capacity, low bandwidth alternatives?)

e 4D/ND (SUMMA/context) parallelism can give you good speedups

~
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Thank You!
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Parallelism Al Architecture

Data and Tensor .
Multipl
(1D, 2D, 3D), K Space N\ i ultiple t
Pipeline yperparameters
S hpd | for Transformer,
( (;:pt(iamLilzee?)' ){ Different variants
' (Convs, Spectral),
Sharding, CPU
Offloading Other Models

System
Accelerator (FLOP
rates, Memory
Bandwidths, and
Capacities), Network
(Multiple Bandwidths)
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Comprehensive Performance Modeling and System Design Insights for Foundation Models, PMBS,
SC24, Github



https://dl.acm.org/doi/pdf/10.1109/SCW63240.2024.00179
https://github.com/ShashankSubramanian/transformer-perf-estimates

