Concorde: Fast and Accurate CPU Performance Modeling with Compositional Analytical-ML Fusion

Arash Nasr-Esfahany, Mohammad Alizadeh, Victor Lee Hanna Alam, Brett W. Coon, David Culler, Vidushi Dadu Martin Dixon, Henry M. Levy, Santosh Pandey Parthasarathy Ranganathan, Amir Yazdanbakhsh

Motivation

1. CPU Simulation

Microarchitecture simulation is a key tool in design and exploration, but we lack fast and accurate performance models.

Cycle-level simulators are slow.

Analytical Models are fast, but not accurate.

Motivation

2. Prior Work

Ignores problem structure

- X High sample complexity
- X Bulky neural networks
- X Slow training and inference
- $\times \mathcal{O}(\#instrs)$

SimNet: Accurate and High-performance Architecture Simulation using Deep Learning, ACM SIGMETRICS/IFIP PERFORMANCE '22

TAO: Re-Thinking DL-based Microarchitecture Simulation, ACM SIGMETRICS/IFIP PERFORMANCE '24

Design

3. Compositional Analytical-ML Fusion

Multiple lightweight models work together to progressively achieve high fidelity with low computational complexity.

Design

4. Performance Features

Per-resource analytical modeling produces a rich performance characterization of a program.

6. Concorde is fast and accurate

7. Fine-Grained Performance Attribution

Shapley Value: A fair, order-independent attribution

Case Study

8. Large-Scale Sensitivity Analysis

143M 100k-instruction segment CPI evaluations, in just an hour!

