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Motivation

Execution Trace Feeder

Absence of a unified schema for exchanging 
execution traces
Companies cannot share execution traces 
because of IP issues

Obfuscate proprietary AI model details

Open-source tools for performance 
modeling and analyzing execution traces

Common graph schema for exchanging 
execution traces

Execution Trace Synthesizer GitHubPaper
Goals
1. Obfuscate details of production workloads 
2. Generate representative traces

True Distribution Generated Distribution

Current Trace Synthesizer (Multi-stage)

GraphRNN-based Synthesizer

Background

Workload Parallelization Strategy

Framework-level Scheduling

Communication Mechanism

Messaging/Transport Layer

Communication Scheduling

Data, Model, Platform Agnostic Hybrid, 
Platform-aware Hybrid, Pipelined Parallelism

LIFO, FIFO, Fusion 

Topology-aware Collectives, Send/Recv, RPC 

Sync/Async, Blocking/Non-blocking

TCP, RDMA (+ GPUDirect RDMA) 

# links, BW per link, architecture (chip/package/board),
NIC offload, compression
Flat vs. Hierarchical, 2D/3D/4D Torus (TPU), Switch (DGX2),
Fully-Connected, Hyper-Cube Mesh

Communication Policy and Pattern Distributed worker, Parameter Server 

Buffering, Flow-control, Arbitration, Congestion Mgmt

DNN Models DLRM, ResNet-50, Transformer, GNMT
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Dataflow, Microarchitecture, Flexibility, Sparsity Support

Endpoint Node Design and Connectivity

Fabric Design and Topology

Network Implementation

Increasing
ML model sizes

Increasing
dataset sizes

750GB
texts

1.56 trillion 
words

Distributed machine learning systems are required!

NVIDIA HGX H-100

Cerebras WSE-2

Chakra

Test Case Gen

• Chakra has a working group 
in MLCommons.

• Please feel free to join!
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