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Abstract

A new method of precise measurement of the revolution frequency distribution, Fðf Þ; in the muon storage ring, and
hence muon momentum p; energy E; and equilibrium radius R distributions, has been developed and used in analyzing
data in the muon g-2 experiment at Brookhaven National Laboratory. The method is partly based on the Fourier
transform of the observed electron decay signal, which is known in this experiment only after some time ts after

injection. It is shown that the standard Fourier transform would give a wrong frequency distribution even if the signal
were known immediately after injection. Only the cosine Fourier transform with the properly determined initial time t0
(different for different detectors placed along the orbit) gives the correct frequency distribution in such a case. As for a

later starting time, ts > t0; a special procedure must be used to find t0 and to compensate for the lack of information
about the signal between t0 and ts: The new technique is highly accurate and radically different from that used by
CERN in its muon g-2 experiment. r 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the muon g-2 experiment [1], the injected
muons with momenta distributed around the
designed Pm ¼ 3:0944 GeV=c (the so-called magic
momentum) are rotating in the homogeneous
magnetic field B ¼ 1:4513 T; in the ring of the
magic radius Rm ¼ 7:112 m: Electric quadrupoles
provide the needed vertical focusing. The muon

lifetime t ¼ 64:4 ms: During the muon rotations,
their spins are precessing around their orbits with
the g-2 frequency oa ¼ aðeB=mcÞ; a ¼ ðg� 2Þ=2:
In correlation with these spin precessions, the
decay electron signal, SðtÞ; observed by the 24
detectors placed along the ring, oscillates with the
same frequency. The ideal signal should have the
form

SðtÞ ¼ Ne�t=t½1þ A cosðoat þ fÞ�: ð1Þ

In the presence of the focusing electric field, ~EE; the
more accurate formula for the spin precession
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frequency is

~ooa ¼ �
e

mc
a~BB � a �

1

g2 � 1

� �
~bb� ~EE

� �
;

b ¼ v=c: ð2Þ

The choice of the magic muon energy with energy-
to-mass ratio gm ¼ 29:3; 1=ðg2m � 1Þ ¼ a; was
made to eliminate the influence of the electric field
on the oa value.

However, the distribution of muon g-values, and
hence momenta p; revolution frequencies f ; and
equilibrium radii R; around their magic values
leads to a systematic error Doa=oa caused by a
non-zero electric field ~EE along the non-ideal muon
orbit [2,3]:

Doa

oa
¼ � 2nð1� nÞ

Df

fm

� �2
* +

; Df ¼ f � fm;

n ¼
R@ER=@R

bB
: ð3Þ

Here fm is the magic revolution frequency. Brack-
ets /xS mean x averaged over the distribution of
the muon revolution frequencies. An example of
the equilibrium radius distribution of muons
measured (1999 run) by the method described in
this paper is shown in Fig. 1. This method is
radically different from the method used in CERN
[3].

Turning to our technique, we should note that,
in order to extract the muon frequency distribu-

tion from the decay electron signal, we need to
Fourier analyze not that signal itself, but the so-
called fast rotation signal, FðtÞ; which is defined as
the ratio of the actually observed signal to the fit
function describing this signal, see Figs. 2a–c
(simulations). In the case of the five parameters
fit, we therefore have to analyze

FðtÞ ¼
SðtÞ

Ne�t=t½1þ A cosðoat þ fÞ�
: ð4Þ

The advantage of using this ratio is that both
decay exponential, expð�t=tÞ; and the g-2 fre-
quency, oa; are obviously excluded from FðtÞ and
hence do not disturb the Fourier spectrum of the
revolution frequencies. Physically, FðtÞ describes a
signal which we would see if muons were stable
spinless particles. FðtÞ is the ‘‘rectified’’ signal
whose magnitude does not go down exponentially;
instead, the statistical error of any individual event
in this signal grows exponentially in time. Note
that since our muon bunches are initially short, the
signal FðtÞ includes not only a constant part of the
muon current, and oscillations corresponding to
the muon revolution frequencies, but also higher
modes, k > 1; of these frequencies.

2. Some properties of partial-time Fourier analyses

Any physical process we want to analyze lasts
some finite time. If oscillations of a physical system
are classical like the oscillations of the muon
polarization averaged over quantum states of
different muons, or, say, the rotations of these
muons in the g-2 ring, then the finite time of
oscillations does not forbid us to measure their
frequencies with however high accuracy (limited
only by statistical and systematic errors) by using
some non-Fourier methods. But the accuracy of
the Fourier transform is degraded by a finite time
of observation, Dt . The reason is not merely the
classical uncertainty Df of frequency f found from
the Fourier transform, DfB1=ðpDtÞ: The accuracy
is degraded even when a signal duration Dt is
sufficiently large, as, for example, in the g-2 case,
so the uncertainty Df corresponding to this
duration is small. The main phenomenon deform-
ing the frequency distribution described by theFig. 1. An example of the equilibrium radii distribution.
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Fourier transform is caused by the abrupt begin-
ning of the observed signal at time t0 or later. This
deformation may not disappear even if the end
time tm of the signal goes to infinity, Dt 	 ðtm �
t0Þ-N: We will show this problem (and its
solution) in a simple, analytically solvable example
that is not so far from the actual situation in the g-
2 experiment.

We consider a very short initial muon bunch,
DtB-0; and will take into account that in such a
case, the time dependence of the fast rotation
signal, FðtÞ; observed at a given detector in the g-2
experiment, can be described as

FðtÞ ¼
Z

df AFðf Þ cosoðt � t0Þ; t > t0 ð5Þ

with A-1 when DtB-0: In Eq. (5), Fðf Þ df is
proportional to the initial number of muons
having revolution frequency o ¼ 2pf : The spec-
trum contains the main first mode, k ¼ 1; with the
frequencies narrowly distributed around the aver-

age rotation frequency, /fS; the second mode,
k ¼ 2; with the twice wider distribution concen-
trated around 2/fS; and so on.

What distinguishes the g-2 formula (5) from the
usual Fourier transforms is that time t0 is the same
for all rotation frequencies and their modes observed
at a given detector. It is the time when the center of
mass of the initially very short bunch passes the
detector the first time after injection. (Of course, we
observe only decay electrons, not muons; however,
practically, this makes no difference in the t0-value
because the signal SðtÞ corresponds only to
electrons moving with relativistic velocities, as
muons do, and under small angles to the paternal
muon trajectories.) It is obvious that if the bunch
is sufficiently small at injection, cDtB52pR; and
we are not interested in the analysis of the very
high modes, kb1; and, in addition, the beam line
before and during injection does not cause
essential variations of the muon momentum
distribution along this bunch, as it is in our g-2

Fig. 2. (a) Simulated decay electron signal at early times, SðtÞ: (b),(c) Fast rotation signal, FðtÞ:
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case, then at time t ¼ t0 all oscillations of the fast
rotation signal FðtÞ; with their different frequencies,
simultaneously have maxima, as in our formula (5).
Only later, when the bunch spreads longitudinally
due to the revolution frequency distribution,
phases of different frequencies at a given time
become different. As we will see, this physical
argument about initial phases is crucial for the
very possibility of Fourier analysis of the muon
revolution frequencies in this experiment. But once
we know how to do this analysis, the Fourier
transform provides very precise information about
muon frequency, and hence momentum, and
equilibrium radius distributions.

Formula (5) is correct not only for short
bunches. If there is initially no, or almost no
correlation between muon frequencies and their
longitudinal phases, as in our g-2 case, then the
non-zero length of the bunch merely means the
existence of some distribution of t0’s, cðDt0Þ;
independent of the frequency distribution, Fðf Þ:
Taking this into account, we can average Eq. (5)
over the longitudinal distribution: /cosoðt � t0 �
Dt0ÞS ¼ / coso Dt0S cosoðt � t0Þ þ /sinoDt0S
sinoðt � t0Þ: If we now choose t0 such that

/sino Dt0S ¼ 0 ð6Þ

then, again, only the cosine Fourier term is present
in Eq. (5) [4]. In the simplest case, when cðDt0Þ is
symmetric, as is likely in our case, and if t0 is the
time when the center of the (now lengthy) bunch
passes a given detector the first time after injection,
then Eq. (6) is true for all frequencies simulta-
neously, independent of distribution Fðf Þ: If
cðDt0Þ is not symmetric, then according to
Eq. (6), t0 may be different for different modes
k ¼ 1; 2;y . However, we analyze only the main
mode, k ¼ 1; and since the revolution frequency
distribution is very narrow, ðf �/fSÞ=fB
1:4� 10�3; Eq. (6) gives practically the same Dt0 for
all frequencies in question even for a non-symmetri-
cal bunch. For the same reason, factor A in Eq. (5) is
practically constant for a given mode; for the first
mode, A 	 /coso Dt0SE/cosð2p/fSDt0ÞS=
constant. (Outer brackets mean averaging over
the longitudinal distribution, inner brackets mean
averaging over the frequency distribution.)

In Eq. (5), Fðf Þ is an actual frequency distribu-
tion unknown in advance, and not the Fourier
transform, Fðf Þ; of the known signal FðtÞ; see
formula ð4ÞFsimply because FðtÞ is not defined at
tot0 (in fact, at tots; ts4t0), while the Fourier
integrand must be known for the entire
ð�N;þNÞ time interval. However, we can say
much more than that.

Let us investigate the example of a rectangular
frequency distribution in Eq. (5), the single mode,
the very short bunch:

FðoÞ ¼
1=O; o0 � O=2oooo0 þ O=2

0; otherwise

(
ð7Þ

where o0 is the average frequency of this distribu-
tion. Using Eq. (7), let us calculate the real and the
imaginary parts of the Fourier transform of FðtÞ;
Fðo0Þ ¼ ð2=pÞ

R
dt FðtÞeio

0ðt�t0Þ where FðtÞ is taken
from Eq. (5) and Fðf Þ from Eq. (7); t0 is a
constantFa very important constant, as we will
see later. The (unimportant) factor 2=p is the
normalization factor. From Eqs. (5) and (7),

ReFðo0Þ ¼
2

pO

Z o0þO=2

o0�O=2
do

Z tm

t0

dt

� coso0ðt � t0Þ cosoðt � t0Þ

¼
2

pO

Z o0þO=2

o0�O=2
do

Z tm�t0

t0

dx

� cos½o0ðx þ t0 � t0Þ� cosox

¼
1

pO

Z o0þO=2

o0�O=2
do

Z tm�t0

0

dx

� fcos½ðoþ o0Þx þ o0ðt0 � t0Þ�

þ cos½ðo� o0Þx � o0ðt0 � t0Þ�g: ð8Þ

The term with frequency ðoþ o0Þ in braces can be
neglected since we are interested in such frequen-
cies o0 that jo� o0j5oþ o0; and these two 7
combinations go to the denominators after the
integration over x is performed. Thus,

ReFðo0Þ ¼
1

pO

Z o0þO=2

o0�O=2

do
o� o0

� fsin½ðo� o0Þðtm � t0Þ � o0ðt0 � t0Þ�

þ sino0ðt0 � t0Þ�g ð9:1Þ
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¼
1

pO

Z o0þO=2

o0�O=2

do
o� o0fcoso

0ðt0 � t0Þ

� sinðo� o0Þðtm � t0Þ � sino0ðt0 � t0Þ

� ½cosðo� o0Þðtm � t0Þ � 1�g ð9:2Þ

¼
1

pO



coso0ðt0 � t0Þ

� ½Siðo0 � o0 þ O=2Þðtm � t0Þ

� Siðo0�o0 � O=2Þðtm � t0Þ��sino0ðt0� t0Þ

� Ci o0� o0 þ
O
2

� �
ðtm� t0Þ�Ci o0�o0�

O
2

� ��

�ðtm � t0Þ � ln
o0 � o0 þ O=2
o0 � o0 � O=2

��
: ð9:3Þ

Here SiðzÞ; CiðzÞ are sine and cosine integrals.
They are tabulated for positive z; but Eq. (9.3) is
correct for both positive and negative values of
ðo� o0 þ O=2Þ and ðo� o0 � O=2Þ; taking into
account the following properties of SiðzÞ; CiðzÞ:
Sið�zÞ ¼ �SiðzÞ; zX0; Cið�zÞ ¼ CiðzÞ � ip; z > 0;
Ci ð�zÞ � ln ð�z Þ ¼ CiðzÞ � lnðzÞ; z > 0; CiðzÞ �
lnðzÞ-0:5772 when z-0: SiðzÞ-p=2�
cosðzÞ=z; CiðzÞ-sinðzÞ=z; when z-N;

z ¼ ðo0 � o07O=2Þðtm � t0Þ: ð10Þ

The plus or minus sign in Eq. (10) corresponds to
the signs in Eq. (9.3). We assume a sufficiently long
duration ðtm � t0Þ of the observed signal, so zb1
for practically all values of o0; with the exclusion
of only two areas around the sharp borders of the
frequency distribution in this example, where o0 ¼
o07O=2: Note that when o0 is inside our
frequency distribution, the two sine integrals in
Eq. (9.3) have different signs and are summarized,
and when o0 is outside of that distribution they
have the same signs and hence cancel each other
out. Taking this into account and neglecting terms
of the order 1=z; z-N; we therefore have the
following approximate formula for o0ao07O=2:

ReFðo0Þ ¼Fðo0Þ coso0ðt0 � t0Þ

þ
sino0ðt0 � t0Þ

pO
ln

o0 � o0 þ O=2
o0 � o0 � O=2

����
����:
ð11Þ

Similar calculations lead to the approximate
formula for the imaginary part:

ImFðo0Þ ¼Fðo0Þ sino0ðt0 � t0Þ

þ
coso0ðt0 � t0Þ

pO
ln

o0 � o0 þ O=2
o0 � o0 � O=2

����
����:
ð12Þ

These formulas for the rectangular frequency
distribution (7) expose the ‘‘anatomy’’ of the
distortion, which appeared to be logarithmic, of
the actual frequency distribution by the Fourier
transform of the half-time signal. But we can see
also that it is possible to extract the correct
frequency distribution from these formulas in the
following three cases.

(a, b) O-0; O-N: In these cases the loga-
rithmic terms in Eqs. (11) and (12) go to zero, and
since FmaxðoÞB1=O; the factors before the algo-
rithms in formulas (11) and (12) have the same
order as Fðo0Þ; so when the logarithms go to zero,
the second terms in Eqs. (11) and (12) can be
neglected. Therefore, the usual Fourier transform
leads to the correct result, FðoÞ ¼ FðoÞ: However,
we are not interested in these two cases.

(c) t0 ¼ t0; the case in which we use a very special
Fourier transform, namely the cosine transform
with the time counted from the initial time t0; i.e.,
from the moment when the center of the muon
bunch passes the detector immediately after
injection. In this case,

ReFðoÞ ¼ FðoÞ; t0 ¼ t0: ð13Þ

Fig. 3a shows the result of a simulation in the case
when a very short bunch injected into the g-2 ring
has the frequency distribution (7), time t0 of the
initial passing the given detector is known, and
FðtÞ can be (and has been) calculated directly using
beam dynamics. After that we have applied the
cosine Fourier transform to FðtÞ from the starting
time ts such that ts ¼ t0 ¼ 0: The result is not ideal
only because we analyze a (non-realistic) rectan-
gular distribution function disconnected at two
frequencies. In Fig. 3b, the starting time is
10 nsat0 ¼ 0: We see that even if this time is
much smaller than our revolution period, T ¼
149 ns; the distortion of the actual distribution is
tremendous. (In our 1999 measurement of the
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muon frequency distribution, the achieved accu-
racy of the initial time value was 70:5 ns; see the
next section.)

Rule (13), see also Eq. (6), was first theoretically
found in Ref. [4] for an arbitrary frequency
distribution, FðoÞ; and was confirmed by simula-
tions which assumed that the initial time, t0; was
known and that the fast rotation signal could be
observed beginning from that very time, ts ¼ t0:
The last assumption appeared to be unrealistic for
our g-2 experiment because signals can be ob-
served only later, ts > t0: The needed corrections
are described in the next section.

3. Analysis of the fast rotation signal known only at

later times

The g-2 and hence the fast rotation signal can be
observed at a given detector only after its gate is
open, that is, some several microseconds after
injection. In connection with this, there are two
problems in analyzing the muon frequency dis-
tribution. First, since initial time t0 is not directly

measured, an iteration procedure for determining
it with the needed accuracy must be found.
Second, the iteration procedure for extracting the
frequency distribution from the data beginning not
from t ¼ t0; but from some later time, ts > t0; must
also be found. It seems obvious that the smaller
the ts; the easier the analysis. (In the 1999 run, the
smallest possible starting time, ts; for the observa-
tion of the fast rotations was 4:7 ms; some 32 turns
after injection.)

The first task is to determine t0 in the first
approximation. For this we must work with the
fast rotation signal, FðtÞ; see formula (4), where
SðtÞ in the numerator is the actual g-2 signal (in the
chosen detector): The denominator is either the
five parameter fit for this detector, as in our case,
or a more accurate fit function. Of course, the fast
rotation itself must not be included in the fit
function in the denominator. Note that besides
frequencies around the main first mode (the usual
revolution frequencies), FðtÞ contains information
about higher modes, kf ; k ¼ 2; 3;y . However,
one can see from Fig. 2 that after tB30 ms (about
200 turns), the fast rotation signal FðtÞ becomes
equal to the sum of a constant part of the muon
current and oscillations having only one frequency,
namely, the average revolution frequency, /fS;
the amplitude of which is slowly damping, plus
some fluctuations. The physical cause of the
presence of only one visible frequency at late times
is the phase mixing of oscillations having different
frequencies inside the same mode, with the phases
of the highest modes, k > 1; mixing much faster
than the phases of the frequencies distributed
around the main first mode, k ¼ 1: As a result, the
highest modes disappear in the time-domain signal
FðtÞ much faster than the main mode and, in the
main mode, the average frequency /fS dom-
inates. (Note that in the frequency domain, none
of the frequencies disappear; frequency distribu-
tion Fðf Þ is an integral of motion in the g-2 ring.)
In fact, we can well distinguish the average
frequency /fS of the main mode in FðtÞ much
earlier, several microseconds after injection.

Now, using the existence of the clearly visible
one-frequency oscillations, we define frequency
/fS in the first approximation directly from FðtÞ;
and then count an integer number of the average

Fig. 3. Cosine Fourier image of the rectangular distribution,

zero starting time ts (simulations); (a) correct initial time t0;
(b) incorrect initial time.
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revolution periods, /TS; backwards in time,
beginning from some good maximum of FðtÞ;
down to the very first turn after injection. This way
we obtain the initial time, t0; in the first approx-
imation. Its more precise value must be defined by
iterations later. Though we find t0 only for one
frequency, a physical argument described above is
that all other revolution frequencies in question
have simultaneous maxima at the same time t0 (for
a given detector) and, therefore, every frequency is
present in the signal in the form Fðf Þ cosoðt � t0Þ;
with the same initial time t0:

Our next step is to calculate the cosine Fourier
integral using the data available for a given
detector and the first approximation for the initial
time for this detector:

ReFðf ; ts; tmÞ ¼
Z tm

ts

FðtÞ cos 2pf ðt � t0Þ dt ð14Þ

for those revolution frequencies, f ; first mode,
which are accepted by the g-2 ring, and some f ’s
beyond that area for a purpose to be explained
later. (It is possible and interesting also to analyze
the higher modes, k > 1; but we will not touch on
this subject here.) To have a better iteration
process, starting time ts should be taken at some
maximum of the function FðtÞ after the gate-on
time of the chosen detector. As for tm; we have
shown in the previous section using our example
that, for a sufficiently big upper time, integral (14)
does not depend on it. In accordance with the
results of many simulations, the sufficiently big
upper limit in the g-2 experiment should be above
250–300 ms: Having this in mind, from now on we
will omit tm from Fðf ; ts; tmÞ writing Fðf ; tsÞ
instead. (This function depends also on t0; but
we can omit t0 because there is only one correct
value of it.)

The theory and simulations prove that if ts ¼ t0
and t0 is found correctly, and statistics is not
limited, ReFðf ; t0Þ is exactly proportional to
the actual muon revolution frequency distribution
Fðf Þ; if this distribution has any physically reason-
able shape. However, the fast rotation signal FðtÞ
is known only for times t > ts > t0:Moreover, up to
now we know how to find t0 only in the first
approximation. In order to understand how to
refine t0; look first at Fig. 4 which shows

ReFðf ; tsÞ for different ts’s. These are results of
simulations of the fast rotation signal, in which t0
is assumed to be known. In this simulation, the
envelope of the muon revolution frequency dis-
tribution Fðf Þ is taken as a symmetric triangle. (In
reality, our Fðf Þ appears to be only slightly
asymmetric, see Fig. 1; such small asymmetry does
not increase the number of iterations needed for
our accuracy.) In Fig. 4a, we see that the frequency
distribution is reconstructed precisely by integral
(14) when ts ¼ t0; as it must be. But it is not
reconstructed precisely when tsat0; there is a
background shown in Figs. 4b–d. The bigger the ts
is, the bigger and more complicated the back-
ground is around the actual frequency distribu-
tion. But the shape of the central part of the
distribution is not disturbed. We can use this central
part as the first approximation for Fðf Þ: Now look
at Figs. 5a–d. These are also the results of the
simulations with the same frequency distribution,
but with erroneous t0’s, with different deviations
of t0 in integral (14) from the correct initial time
t0 ¼ 0: Starting time ts is the same in all cases,
ðts � t0Þ ¼ 5 ms: We see that even when the
deviation of t0 from the correct initial time equals

Fig. 4. Cosine Fourier image of the triangle distribution,

correct initial time t0 (simulations): (a) zero starting time ts;
(b)–(d) non-zero starting times.
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only 2 ns; the central part of the image becomes
visibly different from the original. This means that
t0 must be found with accuracy B0:5 ns (some
0.003 of the revolution period).

Simultaneously, with the central part, the back-
ground changes when t0 is changed; however,
further analysis shows that in the nearest neigh-
borhood of /fS; the background must be a
symmetric parabola, independent of the actual
frequency distribution, see formula (19) and
Fig. 6c. Taking this into account, we conclude
with certainty that a very good second approxima-
tion is a t0 that corresponds to the most symmetric
background of ReFðf ; tsÞ (calculated in accor-
dance with Eq. (14)) outside the borders of the
vacuum chamber marked by vertical lines in Fig. 6.
It appears that this second approximation is
sufficient for the needed accuracy.

Now, when we know the initial time we can get
the muon revolution frequency distribution Fðf Þ:
The idea is the following. Although the fast
rotation signal FðtÞ is unknown at times
t0otots; it objectively exists. If FðtÞ for all times
t > t0 and the initial time itself were known exactly,
thenFfor physical reasons explained aboveFthe

muon revolution frequency distribution, Fðf Þ;
could be found as follows (see (14)):Z tm

t0

FðtÞ cos 2pf ðt � t0Þ dt ¼ AFðf Þ ð15Þ

where A is a constant depending on the initial
azimuthal distribution of muons, as explained
above. However, even if we know t0; we still do
not know the following small part Dðf ; tsÞ of
integral (15):

Dðf ; tsÞ ¼
Z ts

t0

FðtÞ cos 2pf ðt � t0Þ dt ð16Þ

ReFðf ; tsÞ þ Dðf ; tsÞ ¼ AFðf Þ: ð17Þ

But we can calculate Dðf ; tsÞ in the first approx-
imation, which appears to be a final approxima-
tion for our measurement, simply by using the
central part of the ReFðf ; tsÞ: This is possible
because the background described by the function
ð�Dðf ; tsÞÞ is almost constant in the central part of
the distribution.

Fig. 5. Cosine Fourier image of the triangle distribution, non-

zero starting time (simulations): (a) correct initial time; (b)–(d)

incorrect initial times.

Fig. 6. Four-step procedure to get the correct partial time

Fourier image (g-2 experiment). (a) Cosine Fourier image of the

fast rotation signal, non-zero starting time. The initial time is

known in the first approximation. (b) The first approximation

of the revolution frequency distribution. (c) The non-observed

part of the cosine Fourier image. (d) The second approximation

of the revolution frequency distribution.
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An example of the procedure actually used in
our g-2 experiment is illustrated in Fig. 6. By
calculating integral (14) with different t0’s we
found the best initial time, which corresponds to
Fig. 6a with a symmetric background. The central
part of Fig. 6a gave us the main mode of the
frequency distribution in the first approximation,
Fig. 6b. Using this, we calculated Eq. (16) in the
form (see (5)):

Dðf ; tsÞ ¼ a

Z
df 0 Fðf 0Þ

sin 2pðf � f 0Þðts � t0Þ
f � f 0

þ b:

ð18Þ

Constant a is added to not bother about normal-
ization (which is not taken into account in Eq. (16)
either). Constant b takes into account that the
bottom of the frequency distribution, an approx-
imate part of which is represented by the center of
the curve 6a, is not exactly defined there. Integral
(18) with some arbitrary a and b and Fðf Þ
from Fig. 6b, is shown in Fig. 6c. It is almost an
exact parabola, as it must be since, for small
ðf �/fSÞðts � t0Þ;

Dðf ; tsÞ ¼ b þ aðts � t0Þ

� 1�
2p2ðts � t0Þ

2

3
½ðf �/fSÞ2 þ s2� þ?


 �
ð19Þ

/fS ¼
Z

f df Fðf Þ; s2 ¼
Z

f 2 df Fðf Þ �/fS2:

ð20Þ

Finally, we have chosen a and b such that, for the
frequencies outside the area permitted by the
vacuum chamber (the borders of which are
marked by the vertical lines in Fig. 6), the left
part of Eq. (17), and hence Fðf Þ; equals zero. The
obvious reason is that there are no muons beyond
those borders. This gives the next (and final)
approximation, for the needed accuracy, of the
frequency distribution shown in Fig. 6d.
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