Neutrino Detection with Liquid Scintillator Detectors

Minfang Yeh

Neutrino and Nuclear Chemistry Chemistry/Instrumentation

a passion for discovery

Neutrino and Nuclear Chemistry at BNL since 1960+

HOMESTAKE

 $615t^{37}CI + v_e \rightarrow {}^{37}Ar + e^{-}$

 $30-t^{71}Ga + v_e \rightarrow {}^{71}Ge + e^{-}$

780t D₂0 CC/NC

Gallex

SNO

200-kt H₂0 or 37-kt LAr

LBNE (DUNE)

LENS

200-t 0.1% Gd-LS

Daya Bay

780t 0.3% Nd/Te-LS

SNO+

⁶Li, ¹⁰B or Gd doped LS

PROSPECT/LZ

Metal-doped WbLS and plastic scintillator resins

Ovββ, dark-matter, AIT-NEO, medical

Water-based LS

Scintillator

Cerenkov

Radiochemical

1980

1990

2000

2010

BRO 20 2 D RATOR

Scintillation Mechanism

S. Hans, J. Cumming, R. Rosero, S. Gokhale, R. Diaz, C. Camilo, M. Yeh, Light-yield quenching and remediation in liquid scintillator detectors, 2020 *JINST* 15 P12020

Stokes shift, photon-yield, timing structure, and C/H density determine the detector responses

BROOK

Scintillator Components

C. Buck and M. Yeh, J. Phys. G: Nucl. Part. Phys. 43 093001 (2016)

200tons of Daya Bay Gd-LS produced in 2010; stable since production. Transfer ~4 tons to JSNS² in 2020/21

 Key requirements of scintillator detectors for neutrino research: high photon yield, long-term stability, long attenuation length, low toxicity, and high flash point

If you always do what you always did, you will always get what you always got. -Albert Einstein

Water-based Liquid Scintillator

WbLS is

- a novel low-energy threshold detection medium, bridging scintillator and water.
- tunable scintillation light from ~pure water to ~organic
- a NEW hybrid scintillation Cherenkov particle detector (first proposed for proton decay) for varied neutrino programs with multiple applications in non-proliferation, beam-physics, veto, medical physics, LSC counting, etc.
- environmentally friendly with high flash point for underground physics.
- cost-effective in comparison with LS
- viable to load a variety of metallic isotopes for varied physics applications
- Cherenkov λ emits at >400nm still propagate through the detector (maintain directionality).

Principle proven in 2011 (first proposed in 2008)

M. Yeh et al., A New Water-based Liquid Scintillator and Potential Applications, NIMA660 (2011) 51-56.

L.J. Bignell et al., Measurement of Radiation Damage of Water-based Liquid Scintillator and Liquid Scintillator, JINST 10 (2015) P10027

Metal-doped (Water-based)LS

extended reaches for Neutrino Physics and Other Applications

Reactor Antineutrino Detection (by Liquid Scintillator)

coincidence of two consecutive events (prompt and delayed)

Enhance neutrino detection efficacy Reduce accidental background)

A segmented detector

Li loaded using Water-based Liquid Scintillator A monolithic detector

Gd loaded with organometallic complexation

What can BNL offer?

- A unique combination of scientific expertise in chemistry, physics and instrumentation, engineers, project management for varied scientific projects
- Hands-on experiences from benchtop R&D to scaleup production (in-house)
- Data-analysis and optical detector development

Instrumentation at Liquid Scintillator Research Center

- An existing facility for water-based and metal-doped liquid scintillator <u>Detector R&D</u> for particle physics applications.
- Covering a variety of particle physics experiments
- Instrumentation including XRF, LC-MS, GC-MS, TFVD, FTIR, UV, Fluorescence emission, LS6500, 2m dual-attenuation system, low bkg., Compton-suppressing system, etc. (access to ICP-MS at other facilities)
- Provide an educational platform for students (hand-on instrumentation training for next-generation scientists in academic/private sectors)

Brookhaven Science Associates

NATIONAL LABORATORY

Scale-up production at Liquid Scintillator Production Facility

1000L Testbed Facility

(students/postdocs recruiting...)

prototyping liquid performance (UVT-

- prototyping liquid performance (UVT-tank compatible with GdH₂O, WbLS, or LS)
- exercising in-situ filtration/purification and deployment schemes and ESH training (and potentially testing for other subsystems, i.e. photosensors)
- fast turn-around operation using inhouse resources in liquid production, QA/QC equipment, and existing mixing facility (partially supported by BNL)

AIT/NEO (DNN-NA22)

Advanced Instrumentation Testbed, Neutrino Experiment One

- Two matrices: M-WbLS (ex. Gd for AIT/NEO) and WbLS (high loading); dependent on physics of interest
- Optical property, absorption + scattering, feasible to the detector geometry of choice (size)
- Stability over experimental lifetime
- Scalability of commercially available and cost-effective
- Compatible to commercial detector materials
- Capability of Mixing (circulation) in a practical time-scale deployment
- Purification (before mixing) and Insitu circulation (nanofiltration)

AIT/NEO

- Boulby Underground Lab (UK)
- 3GW with Hartlepool (2 cores) at 25km
- (Gd)WbLS vs GdH₂O
- Non-proliferation + stretched sciences

NATIONAL LABORATORY

(Near-term) Scientific Projection

2023-2024:

 Readiness of WbLS scale Production

<u>2022-2023:</u>

 Prototyping exercise and Scalability designs

2020-2021: (multi-institutes)

- Formulation, Purification,
 Filtration and
 Characterization
- Material compatibility

BROOKHAVEN NATIONAL LABORATORY

Brookhaven National Laboratory

The work, conducted at Brookhaven National Laboratory, was supported by the U.S. Department of Energy under Contract DE-AC02-98CH10886

M Yeh, BNL VIRTUAL SYMPOSIUM