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Instrumentation Division

Mission:
“To develop state-of-the-art instrumentation required for experimental
research programs at BNL.
To provide limited quantities of such for BNL-related experiments.”

Core technologies:
* Semiconductor detectors (pixel-, drift-, photo sensors);
e Gas and noble liquid detectors:
¢ Microelectronics (low noise analog/digital);
e Lasers and Optics (ultra-short photon & electron
bunches, photocathodes, optical metrology):
e Micro/nano Fabrication (sensors, microstructures).

Staff:
48 Total
27 Scientists & Professionals

21 Technical & Administrative

Publications in FY 01/02
HEP Related: 15
All Programs: 45
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HEP Activities

Projects/Experiments:

a LHC, with Physics Depit.

« ATLAS liquid argon calorimeter: responsible for signal integrity,
coherent noise, Faraday cage design from the electrodes —
feedthroughs — readout crates;

« ATLAS Cathode Strip Chambers and low noise electronics for muon
detection;

d KOPIO, MECO at AGS: Si-drift photo diode for calorimeter;
calorimeter and tracker electronics;

R&D for Future Facilities (LHC Lum. upgrade, Linear Collider):

Q Si-detector technology (the only facility for U.S. HEP program):
* single-sided 2-d strip detectors
 radiation hardness techniques: oxygenated, ~ 100 ohm cm

O Microelectronics, low noise,submicron-to-nanoscale;
QA Neutrino Detectors, new concepts; LSST

d Picosec/femtosec beam diagnostics for future accelerators.



Segmented S Strip Detectorsfor CERN NA6G0O
(Telescope for Proton Physics at SPS)

Different pitches

Strips segmented
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SPIN POLARIMETER for RHIC and AGS

Si detector
Measure the beam polarization at RHIC and AGS by £
measuring the left-right spin asymmetry of polarized i |
protons scattering off a carbon (proton) target by T o ""o
detecting the the low energy recoil carbons (protons) | i
with S detectors. pc; O
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Double-sided strip detectors on high resistivity silicon (~3-5 kohm cm):

- Two dimensional position sensitivity 0 strips

* Minimum channel number (2N) To pre-Anps, 0V

But:

[
Sil, | Al

- Two-sided process T
about 3-4 times more N-type S
complicated/expensive l
than single-sided process

« Radiation soft due to the S
the complicated structure
on the n-side

 Two polarities of
readout _
electronics n strips
p+ channel stoppers




The new concept:
Alternating stripixel detectors (ASD)

Individual pixels are alternately connected by X and Y readout lines (strips)

+ Two dimensional e e s
position sensitivity is . ,, L - i el
achieved by charge P AT ' "< | N S
sharing between XandY == : : s f:ﬁfg—

) s Y readouts
pixels ez

* In principle, the pixel
pitch should not be |
larger than the size of d = 200 ym
charge cloud caused by n type Si :
diffusion process ?

- e Positive Bias




Schematic of the Prototype Stripixel Detector
For PHENIX Upgrade
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Novel Stripixel Detector for Sub-micron Position
Resolution in Two Dimensions with One-sided Process

8.50 um pitch in both X and Y strips
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Oxygen Diffusion technology developed at BNL

Oxygenated Si detectorsare partially radiation hard to charged particles

Vid (V) normalised for

300 gm thickness

V4 versus proton fluence measured by
C-Von BNL 1.2 - 3 kQcm wafers
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Radiation hardness of medium resistivity CZ S (high oxygen content)
Neutron and proton radiation
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CZ Si detectorsare dightly morerad-hard than FZ oneswith n-rad
CZ Si detectors are much more rad-hard than FZ oneswith p-rad
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Interpolating Pad Readout for GEM (Gas Electron Multiplier)

<100pm rms
position
resolution
with 2mm pad
pitch

Upper GEM

= Lower GEM




TPC for the LEGS Experiment

Double GEM
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Anode pad plane with
readout electronics on
the back

*First GEM based TPC for an
experiment

*Designed for low rate, low
multiplicity environment: single
sample per channel per trigger

*Double GEM amplification, gas
gain <1000

*Drift field ~ 600V/cm (30kV
high voltage), total drift time ~
Sus.

eInterpolating zigzag anode pad

plane, 200um position resolution
for stiff tracks

*Readout channel count ~8000

sCustomized ASICs, 32
channels per chip, ImW per
channel

*Electronic noise <250e, 500ns
peaking time, timing resolution ~
20ns

8 sets of ADCs digitize the
sparsified and serialized data
streams, worst case event
processing time <0.5ms



High energy and nuclear physics

High-speed, radiation-tolerant
sampling/digitizing board (ATLAS)

240-channel multichip module for
Si drift detector readout (STAR)

Life Sciences

Condensed matter physics
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Photon-counting ASIC for
Microelectronics Group EWSLI

AREAS OF EXPERTISE

e CMOS monolithic circuits
" : Industry collaboration and
e charge-sensitive sensor interface . )

national security

 analog signal processing

Handheld
* low noise, low power techniques imaging probe
for intra-
e VLSI custom design + layout operative cancer
detection (ev
Products)
H -MOSFET circuitry
¥ DSP  ASIC CdznTe , S%Jmf"ﬁhmﬁdm.de S ==
A CHMeT . P epitaxial layer
id p" substrate
Positron emission tomograph for Proposed gamma spectrometer Optically-sensitive pixel for
5 imaging the awake animal brain for detection of nuclear materials barcode scanner-on-a-chip
16 (Medical/Chemistry/Physics) (LANL) (Symbol Technologies)




ATLAS
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Photon-counting ASIC for EXAFs

Thresholds before and after DAC adjustment

1850 I T 1 I T T

1800 — -

1750 =

1700 -

I | | | | |
— 0 5 10 15 20 25 30 35

—+ Before DAC adj.
¥ After DAC ad).




Limits of Low-Noise Signal Amplification in Commercial Deep Submicron CMOS Technology

Noise vs. power Dynamic range scaling
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Prospects for charge sensitive amplifiersin scaled CMOS
NIM A480, 713 (Mar. 2002)



Superconducting Photoinjector

LHe (~2K)
RF

Solenoid

pickup

V2 cell cavity

Quantum efficiency, current vs. injection phase
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Pulsed Power injector

—

— 900KV, 1 ns Voltage Rul

R1__500mV_02: 58: 26. 78 500pS

IWH

Electron beam profile ]
Spot size ~65 pm rms

Charge ~0.4pC

T|Sapph||re |aser Excimer |aser emittance ~0.7 mm mrad
266 nm, 60 pJ, 300 fs 248 nm, 250 mJ, 10 ns
To photocathode To laser triggered spark gap

System Capabilities
Voltage range: 350 - 900 kV, 1 ns FWHM
Cathode laser: 60 pJ, 300 fs FWHM, 266nm

Pulse Generator

1MV.1ns System timing jitter: <lns
Accelerating gradient:  >1 GV/m
Solenoid BPM 1 BPM 2 Maximum current density: >100 kA/cm?

Maximum charge: >60 pC from 300 fs laser




Multialkali Photocathode Development for e-cooling

Goals:

. Electron beam parameters: charge
10 nC, PRF 10 MHz, average
current 100 mA

. Quantum efficiency: few % for
Visible photons

. Lifetime: >8 hrs at a vacuum of
1x10-° Torr

Investigate:

. Life time as a function of pressure
and contaminant

. Possibility of in situ rejuvenation

A multialkali cathode deposition and testing S}'/stem

22



EO signal {(a.u.)

Electro-optical measurement of
45 MeV relativistic electron beam bunch length

Measurement from oscilloscope
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Generation of Coherent, Femtosecond, High Brightness VUV
and X-Ray Beams Using High Order Harmonic Conversion 2002 LDRD

100-fs kHz :
: ; as filled
Ti:sapphire —| regen %hgllow—fiber—
laser oscillator

final amplifier
compressor

vacuum chamber gas jet

fundamental
beam

high-harmonic
beams

harmonics
reflector

light throughput ~50% (~0.2 mJ/pulse)

Output polarization = input polarization

Gaussian input Expected output
Intensity distribution

iber capillary

Generation of 200 pJ, 10 fs photon pulses at 800 nm
with Bessel function intensity distribution

FY 2003: Optimize coupling to obtain 200 puJ, ~10fs,
Bessel function output, fabricate 1 KHz PRF
. o gas jet, fabricate differential pumping stage,
Generation of VUV, XUV radlatlog up to ~ 100 ey at focus the laser light into the gas jet
kHz pulse repetition frequencies (PRF) and its

characterization up to ~ 40 eV FY 2004: Generate and characterize VUV radiation,

Increase laser energy to > 10 mJ



New direction on laser applications

Technique towards attosecond optical pulse
measurements — 3rd-harmonic-generation in

the XUV

To establish a benchmark, state-of-the-art, ultrashort light
pulse measurement in the attosecond pulse regime for the first

time.

interferometric

What we know:

S-THG autocorrelation
in the NIR to UV and
the geometry of the
nonlinear optical
generation

intensity

-100

What we propose:

Explore S-THG nonlinear
optics in the XUV and
apply the technique to
characterize isolated
attosecond pulses using
3 order autocorrelation.

Ax(s)

N

interface

' surface-THG
autocorrelation
on 160 pm thick
cover glass

Phase Shift

0 100
Tima tel

grating
first order

miror 1
5 L]

zeroth order == -3
detector

zeroth order of the
first order

—
—

first order of the
zeroth order

A low dispersion Michelson
interferometer in the XUV

LDRD submitted 2003

Micro- and nano-machining using
ultrashort light pulses

To advance BNL in the area of ultrashort laser-pulse-
assisted micro-nanomachining. This research area is
completely missing at BNL yet it is the fastest growing
technology of ultrashort-laser-pulse applications.

Fabrication of
periodic arrays of l

um to sub-pm
diameter silicon |._J|’[I’ElShDI’T I
pillars light ; k
pulse Mas
F, gas
various masks

fabrication of
nanometer sized
features on thin
metal films

LDRD submitted 2003

Laser-field-assisted



Nanopatterning Cluster: Project Examples

Nanotemplate IR Emission

'[A)\lrect%cll o from SWCNT

Osiempr)]/. B. Device: J. Misawich,
cko, Physics Materials Science

Super conductor /
semiconductor device:
F. Camino, SUNY SB

Soft x-ray zone plates:
C. Jacobsen, SUNY SB

Center for Functional MNanomaterials
A e FasTiorsl Labeorstoersy



Nanopatterning Examplell: Fabrication Steps For
Hybrid Semiconductor-Super conductor Nanostructure

F. Camino, E. Mendez SSUNYSBZ, J. Warren SBNLz

i Cross-section of

~ resist and InAlAS
layer s formed by

. MBE

Nanostructure
exposed by reactive
ion etching
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200 nm resist
line used to define
nanostructure

Sputtered Nb
- electrodes fabricated
by “lift-off” method

HB

Center for Functional MNanomaterials
A e FasTiorsl Labeorstoersy
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FUNDING

e Until 1998 Instrumentation Division had been funded from Lab overhead
(G&A) at alevel of =51 FTEs.

e Presently 37 FTEs funded from G&A (+11 from CRADAs. WFO, and
grants).

e G&A support has been level (~M$5.6) since FY98

“*Funding by grants from diverse sources (instead of G&A) to support
personnel would divert Instrumentation effort from supporting BNL
research program and core technologies. It should be pursued only to
augment the base program supported by G&A.

Benefit to BNL (“and the community at large”): Provide technology base
and expertise., and serve as a resource for important programs and initiatives,
such as ATLAS, RHIC experiments. electron cooling, Linear Collider, NSLS,
nanotechnology, single particle acrosol analysis, and PET.





