eRHIC Overview

- Why is it important and timely to study the fundamental origin of observable matter?
- Why a high luminosity lepton-ion collider?
- Why now?
- Why eRHIC?
- eRHIC conceptual design
- Cost
- Schedule

Why study the fundamental structure of matter?

- QCD is the gauge theory which provides the basis for understanding the nucleon and atomic nuclei
- The valence quark region is well explored experimentally and reasonably well understood theoretically
- Frontier research in QCD demands a concerted experimental effort directed at the role of the gluons and sea quarks
- A new accelerator which directly probes the quarks and gluons is required

Lepton probe High center of mass energy High luminosity \Rightarrow precision vs. *ab initio* QCD Polarized lepton, nucleon Optimized detectors

• This accelerator is urgently needed to make progress in this field of research and has substantial discovery potential R.G. Milner MIT BNL PAC March 23, 2006 2

Crucial, open questions to be addressed by eRHIC

- Spin structure of the nucleon See talk by Abhay
 - $g_{1}^{p}(x)$ at low x dramatic QCD prediction
 - gluon and sea quark polarization
 - new (GPD, transversity) parton distributions
- Partonic understanding of nuclei hot QCD
 - gluon momentum distribution in nuclei
 - fundamental explanation of nuclear binding
 - saturation, color glass condensate See talk by Raju
- Test QCD
 - Precision: Bjorken Sum Rule
 - Novel physics: Hard diffraction

Significant discovery potential

Why a high luminosity lepton-ion collider ?

- Lepton probe provides precision but requires high luminosity to be effective
- High E_{cm} ⇒ large range of x, Q² Q_{max}² = E_{CM}² · x
 x range: valence, sea quarks, glue
 Q² range: utilize evolution equations of QCD
- High polarization of lepton, nucleon achievable
- Complete range of nuclear targets
- Collider geometry allows complete reconstruction of final state

eRHIC will be a unique accelerator

Q^2 and x Range of eRHIC

- E_=5-10 GeV
- E_p=30-250 GeV
 s^{1/2}=25-100 GeV

- x_{Bj}=10⁻⁴ to 0.7
 Q²=0 to 10⁴ (GeV/c)²
- polarization of e^{\pm} , p, ³He ~ 70%
- heavy ion beams of all elements
- high luminosity > 10^{33} cm⁻² s⁻¹

R.G. Milner MIT

Why now?

• Understanding the fundamental structure of matter of central importance in physics, e.g.

- Spin structure of the nucleon

- Partonic understanding of nuclei

- Over last 40 years increasing sophistication both in experimental techniques and theoretical understanding of DIS
- Lepton-nucleon capability disappearing at high energy lepton facilities (SLAC, Fermilab, CERN, and DESY)
- Planning of next generation facility a matter of urgency

Why eRHIC?

- Collider with both polarized nucleon and heavy ion beams exists at BNL
- Capitalize on ~ \$ 1 billion investment in RHIC
- Strong scientific interest from RHIC community
- In March 2002, the leading lepton-collider option was identified as a ring-ring configuration using the existing RHIC collider: eRHIC
- Even with these advantages it will take a significant amount of time to realize eRHIC
- eRHIC complementary to other research efforts within the US and worldwide
- eRHIC is an opportunity for the United States to enhance leadership worldwide in an important field of science

eRHIC evolution

- Substantial international interest in high luminosity (~10³³cm⁻²s⁻¹) polarized lepton-ion collider over decade
- Workshops

Seeheim, Germany	1997	MIT, USA	2000
IUCF, USA	1999	BNL, USA	2002
BNL, USA	1999	JLab, USA	2004
Yale, USA	2000		

- eRHIC received favorable review of science case in US 2001 Nuclear Physics Long Range Plan, with strong endorsement for R&D
- At BNL Workshop in March 2002, a plan was formulated to produce a conceptual design for ERHIC within three years
- NSAC in March 2003, declared eRHIC science `absolutely central' to future of Nuclear Physics
- eRHIC identified in November 2003 as future priority in DOE Office of Science 20 year planning

Steering Committee

- A. Caldwell (MPI Munich)
- A. Deshpande (StonyBrook)
- R. Ent (JLab)
- G. Garvey (LANL)
- R. Holt (ANL)
- E. Hughes (Caltech)
- K.-C. Imai (Kyoto Univ.)
- R. Milner (MIT)
- P. Paul (BNL)
- J.-C. Peng (Illinois)
- S. Vigdor (Indiana Univ.)

R.G. Milner MIT

Workshop on QCD: Future Perspectives

- Long Range Planning Exercise for Nuclear Physics planned to start Fall 2006
- Goal: identification of eRHIC as a major priority for new construction
- QCD: Future Perspectives Workshop at BNL in July RHIC+ RHIC/spin+RHIC II + eRHIC + JLab@12GeV+.....
- APS study of QCD under consideration
- Detector R&D meeting
- Polarized electron source workshop
- Optical stochastic cooling workshop

eRHIC Machine Design

- A Zero-order Design Report (ZDR) has been completed in March 2004 and reviewed by the BNL MAC in June 2005
- Endorsement of basic design with many good technical criticisms and suggestions
- The leading eRHIC design concept is a ring-ring configuration and will reach $\sim 10^{33}$ cm⁻² s⁻¹ luminosity
- The present design includes a full energy linac injecting polarized electrons (positrons) into a 10 GeV electron ring
- A more ambitious linac-ring concept is also under consideration to reach luminosity ~ 10^{34} cm⁻²s⁻¹

Possible eRHIC layout

- Collisions at 12 o'clock interaction region
- 10 GeV, 0.5 A e-ring with 1/3 of RHIC circumference
- Inject at full energy 5 10 GeV
- Existing RHIC interaction region allows for typical asymmetric detector (similar to HERA or PEP II detectors)

eRHIC: linac-ring concept

- Two possible designs are presented in the ZDR
- Electron beam is transported to collision point(s) directly from superconducting energy recovery linac (ERL)
- Features:
 - Higher luminosity (~ X 5) possible
 - Rapid reversal of electron polarization
 - Machine elements free region approx. ±5m
 - Simpler IR region design: Round beams possible
 - Multiple interaction regions
 - No positrons

eRHIC ring-ring design concept estimated cost (FY06\$)

\$ 130M	
\$ 170M	
\$ 120M	
\$ 10M	

Total Estimated Direct Costs\$430MEDIA; Conting@25%; ProjG&A\$220M

Total Estimated Costs (w/o escalation) \$650M

Cost framework well understood and stable

R.G. Milner MIT

BNL PAC March 23, 2006

Present Schedule Estimate

- · 2007
- 2009 Q1
- · 2008-10
- 2010 Q1
- 2011 Q1
- 2012 Q1
- 2016 Q4

- NSAC approval
- CDO
- R&D funding
- CD1
- CD2
- CD3 (begin construction)
- CD4 (commissioning begins)

Urgent Priorities

- Urge increased support for long term R&D Important examples include
 - development of polarized ³He ion source for RHIC
 - demonstrate optical stochastic cooling
 - polarized electron source technology
- Urge support for resources for eRHIC detector and simulations group

See talk by Bernd

 eRHIC is required within a decade to maintain progress in the study of the fundamental structure of matter spin structure of nucleon

partonic basis of atomic nuclei

- eRHIC is an outstanding scientific opportunity to realize the next generation QCD machine in a cost effective way
- An eRHIC accelerator design has been developed based on realistic considerations and which can deliver luminosity close to 10³³ cm⁻² s⁻¹ - cost model is well understood
- The more ambitious linac-ring concept has the potential to yield higher luminosity and is under development
- Urgency to realize eRHIC driven by strength of scientific case and interest from worldwide community
- We request the resources and support to make a convincing case to broad nuclear physics community over next year for eRHIC