G. Bunce RHIC PAC, 29 March 2007

RHIC Spin: from now to eRHIC

I would like to thank Les Bland, Werner Vogelsang, Abhay Deshpande, Sasha Bazilevsky, Matthias Grosse Perdekamp, Ernst Sichtermann, Bernd Surrow for their advice and many plots.

- Spin structure of proton
- Strongly interacting probes
- P=60%, L=2x10^31, root(s)=200 GeV in 2006
- Cross sections for pi^0, jet, direct photon described by pQCD
- Helicity asymmetries: sensitivity to gluon spin contribution to proton
- Photon+jet: gluon pol. vs. x_gluon

- W boson parity violating production: ubar and dbar polarizations in proton
- Very large transverse spin asymmetries in pQCD region
- Theoretical advances on cross section, helicity, and transverse spin
- The RHIC Spin Plan and three goals for "RHIC II"

EMC at CERN: J. Ashman et al., NPB 328, 1 (1989): polarized muons probing polarized protons

• What else carries the proton spin ?

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

 \rightarrow How are gluons polarized ?

 \rightarrow How large are parton orbital angular mom. ?

- What are the detailed patterns of quark & antiquark polarizations ?
 → Flavor asymmetries in sea ? Strangeness ?
- What are the origins of large observed single-transverse-spin asymmetries ? What do they tell us about the nucleon ?
 - → Transverse quark pol.? Correlations spin / parton k_T ? Orbital angular momentum? Spatial distributions?

- Spin structure of proton
- Strongly interacting probes
- P=60%, L=2x10^31, root(s)=200 GeV in 2006
- Cross sections for pi^0, jet, direct photon described by pQCD
- Helicity asymmetries: sensitivity to gluon spin contribution to proton
- Photon+jet: gluon pol. vs. x_gluon

- W boson parity violating production: ubar and dbar polarizations in proton
- Very large transverse spin asymmetries in pQCD region
- Theoretical advances on transverse spin: orbital angular momentum?
- The RHIC Spin Plan and three goals for "RHIC II"

<u>Measuring the proton spin structure</u> with polarized proton probes

• this is formalized through "factorization theorems"

Sterman, Libby; Ellis et al.; Collins, Soper, Sterman

Probing the spin structure of the nucleon in polarized pp collisions

Reaction	Dom. partonic process	probes	LO Feynman diagram
 $\vec{p}\vec{p} ightarrow \pi + X$	$ec{g}ec{g} ightarrow gg \ ec{q}ec{g} ightarrow qg$	Δg	A to a
 $\vec{p}\vec{p} ightarrow \mathrm{jet}(\mathbf{s}) + X$	$ec{g}ec{g} ightarrow gg \ ec{q}ec{g} ightarrow qg$	Δg	(as above)
 $\vec{p}\vec{p} \to \gamma + X$ $\vec{p}\vec{p} \to \gamma + \text{jet} + X$ $\vec{r} \to \gamma + \text{jet} + X$	$ec{q}ec{g} ightarrow\gamma q \ ec{q}ec{g} ightarrow\gamma q \ ec{q}ec{g} ightarrow\gamma q \ ec{d}ec{g} ightarrow\gamma q \ ec{d}ec{g} ightarrowec{g} ightarrow\gamma q$	$\begin{array}{c} \Delta g \\ \Delta g \end{array}$	<u>پ</u> کر
$pp \rightarrow \gamma \gamma + X$	$qq ightarrow \gamma\gamma$	$\Delta q, \Delta q$	
$\vec{p}\vec{p} \rightarrow DX, BX$	$ec{g}ec{g} ightarrow car{c}, bb$	Δg	29 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 $\vec{p}\vec{p} \rightarrow \mu^+\mu^- X$ (Drell-Yan)	$ec q ec q ec q ightarrow \gamma^* ightarrow \mu^+ \mu^-$	$\Delta q, \Delta \bar{q}$	$\rightarrow \sim \sim$
 $ec{p}ec{p} ightarrow (Z^0, W^{\pm}) X$ $pec{p} ightarrow (Z^0, W^{\pm}) X$	$ec{q}ec{q} ightarrow Z^0, \ ec{q}'ec{q} ightarrow W^{\pm} \ ec{q}'ec{q} ightarrow W^{\pm}, \ ec{q}'ec{q} ightarrow W^{\pm}$	$\Delta q, \Delta \bar{q}$	>

- Spin structure of proton
- Strongly interacting probes
- P=60%, L=2x10^31, root(s)=200 GeV in 2006
- Cross sections for pi^0, jet, direct photon described by pQCD
- Helicity asymmetries: sensitivity to gluon spin contribution to proton
- Photon+jet: gluon pol. vs. x_gluon

- W boson parity violating production: ubar and dbar polarizations in proton
- Very large transverse spin asymmetries in pQCD region
- Theoretical advances on cross section, helicity, and transverse spin
- The RHIC Spin Plan and three goals for "RHIC II"

RHIC Polarized Collider

2006: 1 MHz collision rate; P=0.6

RHIC Spin Runs

	P L (pb^-1)	Results
2002	15% 0.15	first pol. pp collisions! disc.
		large n asymmetry
2003	30% 1.6	pi^0, photon cross section,
		A_LL(pi^0), 3 PRLs
2004	40% 3.0	polarized hydrogen jet, PLB
2005	50% 13	warm snake (RIKEN); large
	(P^4 x L = 0.8)	gluon pol. ruled out
2006	60% 46	cold snake; first long spin
	(P^4 x L = 6)	run (prelim. to Kyoto)

Polarization Measurements 2006 Run

Luminosity Projection to 2016

- Spin structure of proton
- Strongly interacting probes
- P=60%, L=2x10^31, root(s)=200 GeV in 2006
- Cross sections for pi^0, jet, direct photon described by pQCD
- Helicity asymmetries: sensitivity to gluon spin contribution to proton
- Photon+jet: gluon pol. vs. x_gluon

- W boson parity violating production: ubar and dbar polarizations in proton
- Very large transverse spin asymmetries in pQCD region
- Theoretical advances on cross section, helicity, and transverse spin
- The RHIC Spin Plan and three goals for "RHIC II"

Cornerstones to the RHIC Spin program

And Jets and Direct γ

Ed³ơ/dp³ [pb GeV ⁻²c⁻³]

(Data-Theory)

10

10

10

2

0

Theory

(b)

2

Δ

6

PH^{*}ENIX

(a)

$pp \rightarrow jet X : STAR$

$pp \rightarrow \gamma X : PHENIX$

PHENIX Data

NLO pQCD

BFGII FF

10

12

14

p^γ_T[GeV/c]

16

(by W.Vogelsang) CTEQ 6M PDF

 $\mu = 1/2p_T, p_T, 2p_T$

PRL 97, 252001 (2006)

PRL 98, 012002 (2007)

8

- Spin structure of proton
- Strongly interacting probes
- P=60%, L=2x10^31, root(s)=200 GeV in 2006
- Cross sections for pi^0, jet, direct photon described by pQCD
- Helicity asymmetries: sensitivity to gluon spin contribution to proton
- Photon+jet: gluon pol. vs. x_gluon

- W boson parity violating production: ubar and dbar polarizations in proton
- Very large transverse spin asymmetries in pQCD region
- Theoretical advances on cross section, helicity, and transverse spin
- The RHIC Spin Plan and three goals for "RHIC II"

Exquisite Control of Systematics

RHIC Spin: inclusive π^0 and jet

From NLO pQCD: x_gluon range

A_LL vs. p_T (for pi^0)

$A_{LL}(p_T)$ and $\Delta G(x)$ --use model (GRSV)

Chi² vs. Delta G (GRSV)

Sensitivity to Delta G --for pi^0 --for GRSV model, no theory uncertainties

Data = GRSV-std

Data = GRSV-0

For probed x_gluon range: 0.02-0.3

- Spin structure of proton
- Strongly interacting probes
- P=60%, L=2x10^31, root(s)=200 GeV in 2006
- Cross sections for pi^0, jet, direct photon described by pQCD
- Helicity asymmetries: sensitivity to gluon spin contribution to proton
- Photon+jet: gluon pol. vs. x_gluon

- W boson parity violating production: ubar and dbar polarizations in proton
- Very large transverse spin asymmetries in pQCD region
- Theoretical advances on cross section, helicity, and transverse spin
- The RHIC Spin Plan and three goals for "RHIC II"

<u>Photon + jet \rightarrow Delta G(x)</u>

- A_{LL} at √s = 500 GeV predicted to be quite small using Gehrmann-Stirling set A ⇒ concern about instrumental asymmetries
- The extended coverage in x_{gluon} provided by $\sqrt{s} = 500 \text{ GeV}$ measurements is essential to reduce extrapolation errors. Uncertainty in integral $\Delta G5 \times$ smaller with both $\sqrt{s} = 200$ and 500 GeV measurements

0.1

Input $\Delta G(x)$ evolved

to $Q^2 = 50 \text{ GeV}^2$

 10^{2}

Reconstructed $\Delta G(x)$

- Spin structure of proton
- Strongly interacting probes
- P=60%, L=2x10^31, root(s)=200 GeV in 2006
- Cross sections for pi^0, jet, direct photon described by pQCD
- Helicity asymmetries: sensitivity to gluon spin contribution to proton
- Photon+jet: gluon pol. vs. x_gluon

- W boson parity violating production: ubar and dbar polarizations in proton
- Very large transverse spin asymmetries in pQCD region
- Theoretical advances on cross section, helicity, and transverse spin
- The RHIC Spin Plan and three goals for "RHIC II"

$\Delta q - \overline{\Delta} q$ at RHIC via W production

-1.0

Expected start: 2009

GS95LO(A)

 10^{-1}

 $BS(\Delta g=0)$

- Spin structure of proton
- Strongly interacting probes
- P=60%, L=2x10^31, root(s)=200 GeV in 2006
- Cross sections for pi^0, jet, direct photon described by pQCD
- Helicity asymmetries: sensitivity to gluon spin contribution to proton
- Photon+jet: gluon pol. vs. x_gluon

- W boson parity violating production: ubar and dbar polarizations in proton
- Very large transverse spin asymmetries in pQCD region
- Theoretical advances on cross section, helicity, and transverse spin
- The RHIC Spin Plan and three goals for "RHIC II"

Charged and neutral pion A_N

Kyoto Spin2006

Disentangling Dynamics of Single Spin Asymmetries

Spin-dependent particle correlations

Polarized quark → left-right asymmetry of fragmentation around jet axis

k_T asymmetry of quark in proton → left-right asymmetry of quark jet around polarized beam direction

Large acceptance of the STAR Forward Meson Spectrometer will enable disentangling dynamics of spin asymmetries.

- Spin structure of proton
- Strongly interacting probes
- P=60%, L=2x10^31, root(s)=200 GeV in 2006
- Cross sections for pi^0, jet, direct photon described by pQCD
- Helicity asymmetries: sensitivity to gluon spin contribution to proton
- Photon+jet: gluon pol. vs. x_gluon

- W boson parity violating production: ubar and dbar polarizations in proton
- Very large transverse spin asymmetries in pQCD region
- Theoretical advances on cross section, helicity, and transverse spin
- The RHIC Spin Plan and three goals for "RHIC II"

Theory based on pQCD

<u>Cross sections:</u>

--NLO for all processes

--global analysis, DIS and RHIC, pdf and fragmentation (*)

--understanding lower p_T with pQCD

--understand lower root(s), eta dependence (*)

Helicity:

--NLO for all processes (*)

--global analysis, DIS and RHIC (*)

--understand lower root(s) (*)

Transverse spin:

--Sivers (k_T): Sivers <- -> q-g correlations; DIS to pp; (S x k T) to L ? (*)

--New probes: dijet k_T (*); photon + jet, Drell-Yan (k_T) (*)

--Transversity: from jet axis-pi correlation (*)

*** work in progress or to do

- Spin structure of proton
- Strongly interacting probes
- P=60%, L=2x10^31, root(s)=200 GeV in 2006
- Cross sections for pi^0, jet, direct photon described by pQCD
- Helicity asymmetries: sensitivity to gluon spin contribution to proton
- Photon+jet: gluon pol. vs. x_gluon

- W boson parity violating production: ubar and dbar polarizations in proton
- Very large transverse spin asymmetries in pQCD region
- Theoretical advances on cross section, helicity, and transverse spin
- The RHIC Spin Plan and three goals for "RHIC II"

<u>Sensitivity to Delta G</u> --for pi^0 (and jet, direct photon) --for GRSV model, no theory uncertainties Data = GRSV-std only

2005 pi0 A_LL prelim.

pi0 A_LL 65 pb^-1

For probed x_gluon range: 0.02-0.3

<u>Photon + jet \rightarrow Delta G(x)</u>

- A_{LL} at √s = 500 GeV predicted to be quite small using Gehrmann-Stirling set A ⇒ concern about instrumental asymmetries
- The extended coverage in x_{gluon} provided by $\sqrt{s} = 500 \text{ GeV}$ measurements is essential to reduce extrapolation errors. Uncertainty in integral $\Delta G5 \times$ smaller with both $\sqrt{s} = 200$ and 500 GeV measurements

0.1

Input $\Delta G(x)$ evolved

to $Q^2 = 50 \text{ GeV}^2$

 10^{2}

Reconstructed $\Delta G(x)$

$\Delta q - \overline{\Delta} q$ at RHIC via W production

-1.0

Expected start: 2009

GS95LO(A)

 10^{-1}

 $BS(\Delta g=0)$

Explore (Sxk T) with Drell Yan

- --Hermes (DESY) has observed significant "Sivers" effect: leftright asymmetry of pion vs. (S x k_T) in semi-inclusive DIS, e + p → e' + pi + X
- --Asymmetry "requires" final state interaction of scattered quark with remnant of proton
- --Turning reaction around, polarized proton-proton Drell-Yan production should show a similar left-right asymmetry from (S x k_T) of a valence quark in the polarized proton scattering from an anti-quark in the other proton
- --The Drell Yan asymmetry "requires" an initial state interaction between the quark or anti-quark with the other proton remnant
- --The Drell Yan initial state interaction is repulsive; the DIS final state interaction is attractive → the asymmetries should have opposite signs

Use Drell Yan to study k_T(quark)?

Sivers Effect : SIDIS to Drell Yan

Caveats and Issues

- <u>Continued</u> spin running time
- High luminosity and high polarization
- Be able to handle high luminosity
- Direct photon identification and background
- Jet axis identification
- W backgrounds and W identification
- <u>Continued</u> strong theoretical support
- Multiple ways to probe our understanding of the physics
- The unmeasured x_gluon range for gluon polarization