High T QCD at RHIC II

Introduction

- High T QCD and RHIC
- Fundamental open questions

Experimental quest for answers

- Hard probes: jet tomography and heavy flavor
- Expected progress with upgrades of RHIC

• Ongoing and planed improvements to RHIC

• Time line, detector and accelerator upgrades (RHIC II)

Summary

Study high T and p QCD in the Laboratory

Exploring the Phase Diagram of QCD

BR

- **Quark Matter: Many new phases** of matter
 - Asymptotically free quarks &
 - **Strongly coupled plasma**
 - Superconductors, CFL

Mostly uncharted territory

- **Experimental access to "high" T** and moderate p region: heavy ion
 - **Pioneered at AGS and SPS**
 - **Ongoing program at RHIC**

Overwhelming evidence: Strongly coupled quark matter or nearly perfect liquid produced at RHIC

Quark Matter Produced at RHIC

Fundamental Questions

that can now be addressed at RHIC

from "Future Science at the Relativistic Heavy Ion Collider" BNL-77334-2006-IR, 12/30/2006

- What are the properties of new state of matter?
 - Temperature, density, viscosity, speed of sound, diffusion coefficient, transport coefficients, color screening length
 - Is it a perfect liquid?
 - If it's a fluid: What is the nature a relativistic quantum fluid? If not: What is it and what are the relevant degrees of freedom?
 - Is chiral symmetry restored?
 - What is the mechanism of rapid thermalization?
 - How does the deconfined matter transform into hadrons?
- Is there a critical point in the QCD phase diagram and where is it located?

Key are precision measurements with hard probes and collective behavior currently not accessible at RHIC

→ RHIC upgrades: improved detectors and increased luminosity

Key Experimental Probes of Quark Matter

Nature provides penetrating beams or "hard probes" and the QGP in A-A collisions

• Penetrating beams created by parton scattering before QGP is formed

- High transverse momentum particles → jets
- Heavy particles → open and hidden charm or bottom
- Calibrated probes calculable in pQCD

Probe QGP created in A-A collisions as transient state after ~ 1 fm

Hard Probes: Light quark/gluon jets

Status

- Calibrated probe
- Strongly modified in opaque medium Jet quenching Reaction of medium to probe (2 particle corr. → Mach cones, etc)

Open issues:

Which observables are sensitive to details of energy loss mechanism?

What is the energy loss mechanism?

What phenomena relate to reaction of media to probe?

Answers will come from jet tomography (γ-jet): single, two and three particle analysis

Will be possible at RHIC II: statistics (p_T reach) → increased luminosity and/or rate capability kinematic coverage → increased acceptance & added PID

Jet Tomography at RHIC II

RHIC II will give jets up to 50 GeV

BR

- \rightarrow separation of medium reaction and energy loss
- \rightarrow sufficient statistics for 3 particle correlations p_T > 5 GeV
- \rightarrow 2-3 particle correlations with identified particles

Hard Probes: Open Heavy Flavor

Status

Calibrated probe?

pQCD under predicts cross section by factor 2-5

Factor 2 experimental differences in pp must be resolved

Charm follows binary scaling

Strong medium effects Significant charm suppression and v2 Upper bound on viscosity ?

Open issues:

Limited agreement with energy loss calculations

What is the energy loss mechanism? Are there medium effects on b-quarks?

Answers expected from direct charm/beauty measurements

Will be possible at RHIC II:

BR

b-c separation \rightarrow decay vertex with silicon vertex detectors statistics (B \rightarrow J/ ψ) \rightarrow increased luminosity and/or rate capability

Direct Observation of Charm and Beauty

Detection options with vertex detectors:	m CeV	cτ
• Beauty and low p_T charm through displaced e and/or μ	UCV.	μΠ
• Beauty via displaced J/ψ	D ⁰ 1865	125
• High p_T charm through $D \rightarrow \pi K$	D [±] 1869	317

Hard Probes: Quarkonium

Status

- J/ψ production is suppressed Similar at RHIC and SPS
 - Consistent with consecutive melting of χ and ψ'

Consistent with melting J/ψ followed by regeneration

• **Open issues:**

 Recent Lattice QCD developments Quarkonium states do not melt at T_C
 Is the J/ψ screened or not?
 Can we really extract screening length from data?

0.25 Answers require "quarkonium" spectroscopy including p_T and reaction plan dependence

Will be possible at RHIC II:

BR

statistics (ψ' , Y) \rightarrow increased luminosity and/or rate capability

Quarkonium and Open Heavy Flavor

RHIC II 25 nb ⁻¹			LHC on month			
Signal	PHENIX	STAR	ALICE	CMS	ATLAS	
η or η	<0.35, 1.2-2.4	<1	<0.9, 2.5-4	<2.4	<2.4	
$J/\Psi \rightarrow \mu\mu$ or ee	440,000	220,000	800,000	180,000	8000-100,000	
$Ψ' \rightarrow μμ$ or ee	8000	4000	19,000	-	1400-1800	
$\chi_c \rightarrow \mu \mu \gamma$ or eeg	120,000 *	-	-	-	-	
$Y \rightarrow \mu\mu$ or ee	1400	11,000**	11,000	37,000	15,000	
$B \rightarrow J/\Psi \rightarrow \mu\mu$ (ee)	6500	2500	12,900	- LHC relative to RHIC Luminosity ~ 10% Running time ~ 25% 1 Cross section ~ 10-50x		
$D \to K\pi$	8000****	30,000***	8,000			
large background Heavy flavor in heavy ion collisions at RHIC and RHIC II ~ similar yields!						

****** states maybe not resolved *** min. bias trigger **** pt > 3 GeV

STONY BR

*

Heavy flavor in heavy ion collisions at RHIC and RHIC II A.D.Frawley, T.Ullrich and R.Vogt

 \sim similar yields:

Will be statistics limited at RHIC II (and LHC!)

Examples of Quarkonium Spectroscopy at RHIC II

RHIC Upgrades

On going effort with projects in different stages

Detector upgrades

forward meson spectrometer DAQ & TPC electronics full ToF barrel heavy flavor tracker (HFT) intermediate silicon tracker (IST) forward GEM tracker (FGT)

STAR

Accelerator upgrades

EBIS ion source (started)

Electron cooling (x10 luminosity) by 2010

- at 200 GeV extra x10
- Au+Au ~40 KHz event rate

PHENIX

hadron blind detector muon Trigger silicon vertex barrel (VTX) forward silicon (FVTX) forward EM calorimeter (NCC)

Electron cooling at <20 GeV

- Additional factor of 10
- Au+Au 20 GeV ~15 KHz event rate
- Au+Au 2 GeV ~150 Hz event rate

Completed, on going, expect funding in FY08, in preparation

Which Measurements are Unique at RHIC?

General comparison to LHC

- LHC and RHIC (and FAIR) are complementary
- They address different regimes (CGC vs sQGP vs hadronic matter)
- RHIC is a dedicated machine with broad program, LHC may run 4-5 weeks/year
- Experimental issues: "Signals" at RHIC overwhelmed by "backgrounds" at LHC

Measurement specific (compared to LHC)

- Jet tomography: measurements and capabilities complementary RHIC: large calorimeter and tracking coverage with PID in few GeV range Extended p_T range at LHC
- Charm measurements: favorable at RHIC

Abundant thermal production of charm at LHC, no longer a penetrating probe Charm is a "light quark" at LHC, signal from jet fragmentation and bottom decay Bottom may assume role of charm at LHC

 Quarkonium spectroscopy: J/ψ, ψ', χ_c easier to interpreter at RHIC Large background from bottom decays and thermal production at LHC Rates about equal; LHC 10-50 σ, 10% luminosity, 25% running timer

RHIC II Perspectives

- RHIC II has potential to provide key measurements and many precision measurements unavailable at RHIC today!
- Progress from:
 - Improved detectors (STAR and PHENIX) vertex tracking, large acceptance, rate capability
 - Luminosity upgrade (RHIC II) electron cooling for all energies
 - Improved theoretical guidance phenomenological tools (e.g. 3-D viscous hydro) lattice QCD (e.g. finite density) new approaches (e.g. gauge/gravity correspondence)
- RHIC II will continue to spearhead research in high T QCD through the LHC area.

Backup

Comparison of Heavy Ion Facilities

RHIC is unique and at "sweet spot"

Complementary programs with large overlap:

High T: LHC

High ρ : FAIR

- \rightarrow adds new high energy probes
- \rightarrow test prediction based on RHIC data
- \rightarrow adds probes with ultra low cross section

FAIR: cold but dense baryon

rich matter

- fixed target p to U
- $\sqrt{s_{NN}} \sim 1-8 \text{ GeV } U+U$
- Intensity ~ 2 $10^{9}/s \rightarrow \sim 10 \text{ MHz}$
- ~ 20 weeks/year

RHIC: dense quark matter to

hot quark matter

- Collider p+p, d+A and A+A
- $\sqrt{s_{NN}} \sim 5 200 \text{ GeV U+U}$
- Luminosity ~ 8 10^{27} /cm²s \rightarrow ~50 kHz
- ~ 15 weeks/year
- LHC: hot quark matter
 - Collider p+p and A+A
 - Energy ~ 5500 GeV Pb+Pb
 - Luminosity ~ 10^{27} /cm²s \rightarrow ~5 kHz
 - ~ 4 week/year

Low Energy Running at RHIC

Physics goals:

STONY

BR

■ Search for critical point → bulk hadron production and fluctuations

Requires moderate luminosity can maybe be done in next years

Chiral symmetry restoration → dilepton production

Requires highest possible luminosity, i.e. electron cooling

Luminosity estimate with electron cooling

Assume 4 weeks of physics each, 25% recorded luminosity and sufficient triggers

20 GeV	\rightarrow	10 ⁹ events
2 GeV	\rightarrow	10 ⁷ events

CERES best run ~ $4x10^7$ events NA60 In+In ~ 10^{10} sampled events

Axel Drees

Fundamental Questions (IIII)

How are colliding nuclei converted into thermal quark-gluon plasma so rapidly?

- Initial state and entropy generation.
- What is the low x cold nuclear matter phase?

Progress at RHIC limited by:

detection capabilities → forward detector upgrades

BROWK

Provide key measurements so far inaccessible at RHIC in three broad areas:

- High T QCD (A+A, d+A, and p+p):
 - Electromagnetic radiation (e⁺e⁻ pair continuum)
 - Heavy flavor (c- and b-production)
 - Jet tomography (jet-jet and γ-jet)
 - Quarkonium (J/ψ , ψ ', χ_c and $\Upsilon(1s)$, $\Upsilon(2s)$, $\Upsilon(3s)$)

Spin structure of the nucleon:

- Quark spin structure ∆q/q (W-production)
- Gluon spin structure $\Delta g/g$ (heavy flavor and γ -jet correlations)

• Low x phenomena

"Low x" \Leftrightarrow "forward measurements"

 gluon saturation in nuclei (particle production at forward rapidity)

All measurements require upgrades of detectors and/or RHIC luminosity

RHIC Upgrades Overview

Upgrades	High T QCD				Spin		Low x
	e+e-	heavy	jet	quarkonia	W	∆G∕G	
		flavor	tomography				
PHENIX							
hadron blind detector (HBD)	X						
Vertex tracker (VTX and FVTX)	X	X	Ο	Ο		Ο	Ο
μ trigger				Ο	X		
forward calorimeter (NCC)			0	X	0		X
STAR							
time of flight (TOF)		Ο	x	0			
Heavy flavor tracker (HFT)		X	Ο	Ο			
tracking upgrade		Ο	Ο		X	Ο	
Forward calorimeter (FMS)						Ο	X
DAQ		Ο	X	X	0	Ο	0
RHIC luminosity	Ο	Ο	X	X	Ο	0	Ο

X upgrade critical for success

O upgrade significantly enhancements program

Future PHENIX Acceptance for Hard Probes

(i) π^0 and direct γ with combination of all electromagnetic calorimeters (ii) heavy flavor with precision vertex tracking with silicon detectors combine (i)&(ii) for jet tomography with γ -jet

(iii) low mass dilepton measurments with HBD + PHENIX central arms

PHENIX Detector Upgrades at a Glance

Central arms:

 Electron and Photon measurements Electromagnetic calorimeter Precision momentum determination

Dalitz/conversion rejection (HBD) Precision vertex tracking (VTX)

Hadron identification
 PID (k,π,p) to 10 GeV (Aerogel/TOF)

Muon arms:

Muon

Identification Momentum determination

High rate trigger (μ trigger) Precision vertex tracking (FVTX)

 Electron and photon measurements Muon arm acceptance (NCC) Very forward (MPC)

STAR Upgrades

Jet Tomography with RHIC II

RHIC II will give jets up to 50 GeV

- → separation of medium reaction and energy loss
- \rightarrow sufficient statistics for 3 particle correlations p_T > 5 GeV
- \rightarrow 2-3 particle correlations with identified particles

Comments on High p_T Capabilities

• LHC

ST**O**NY

BR

Orders of magnitude larger cross sections

~3 times larger p_T range

RHIC with current detectors (+ upgrades)

- Sufficient p_T reach
- Sufficient PID for associated particles
- What is needed is integrated luminosity!

p_T (GeV/c)

Fundamental Questions (I & II)

Key probe: electromagnetic radiation:

- No strong final state interaction
- Carry information from time of emission to detectors
 γ and dileptons sensitive to highest temperature of plasma
 Dileptons sensitive to medium modifications of mesons
 (only known potential handle on chiral symmetry restoration!)

Status

BR

- First indication of thermal radiation at RHIC
- Strong modification of meson properties Precision data from SPS, emerging data from RHIC
- Theoretical link to chiral symmetry restoration remains unclear

Can we measure the initial temperature? Is there a quantitative link from dileptons to chiral symmetry resoration?

Answers will come with more precision γ data \rightarrow upgrades and low energy running

Fundamental Questions (III)

How does the deconfined matter transform into hadrons?

Status:

- Elliptic flow (v2)
 - v₂ of mesons and baryons scale with constituent quark number
- Evidence for deconfined quarks

Hadronisation via recombination of constituent quarks in QGP

Progress from \sqrt{s} and flavor dependence of collective flow

Limited by:

flavor detection capabilities s, c, b mesons and baryons → vertex detectors and extended particle ID

Beyond PHENIX and STAR upgrades?

- Do we need (a) new heavy ion experiment(s) at RHIC?
 - Likely, if it makes sense to continue program beyond 2020 Aged mostly 20 year old detectors Capabilities and room for upgrades exhausted Delivered luminosity leaves room for improvement
 - Nature of new experiments unclear at this point! Specialized experiments or 4π multipurpose detector ???
- Key to future planning:
 - First results from RHIC upgrades
 Detailed jet tomography, jet-jet and γ-jet
 Heavy flavor (c- and b-production)
 Quarkonium measurments (J/ψ, ψ', Υ)
 Electromagnetic radiation (e⁺e⁻ pair continuum)
 Status of low energy program
 - Tests of models that describe RHIC data at LHC Validity of saturation picture Does ideal hydrodynamics really work Scaling of parton energy loss Color screening and recombination

New insights and short comings of RHIC detectors will guide planning on time scale 2010-12

