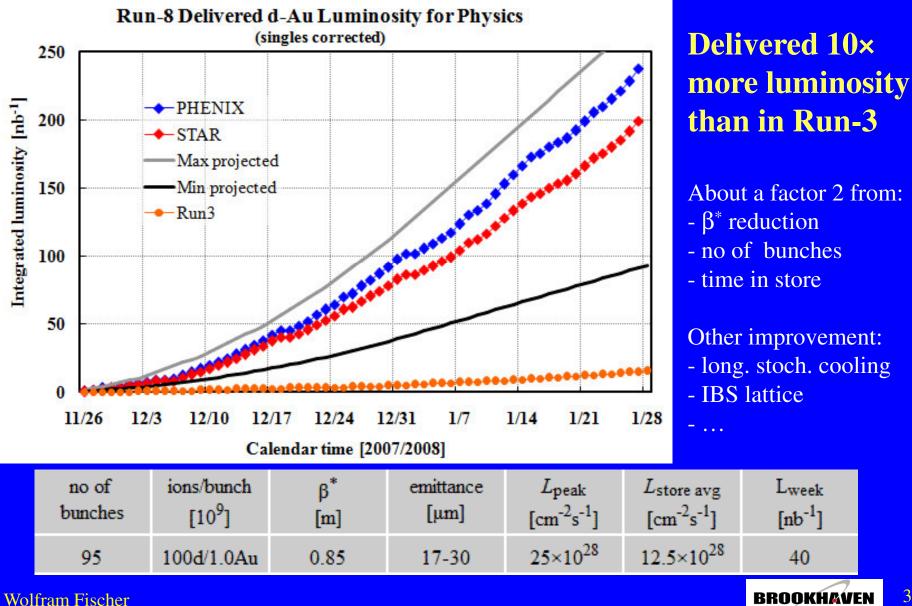
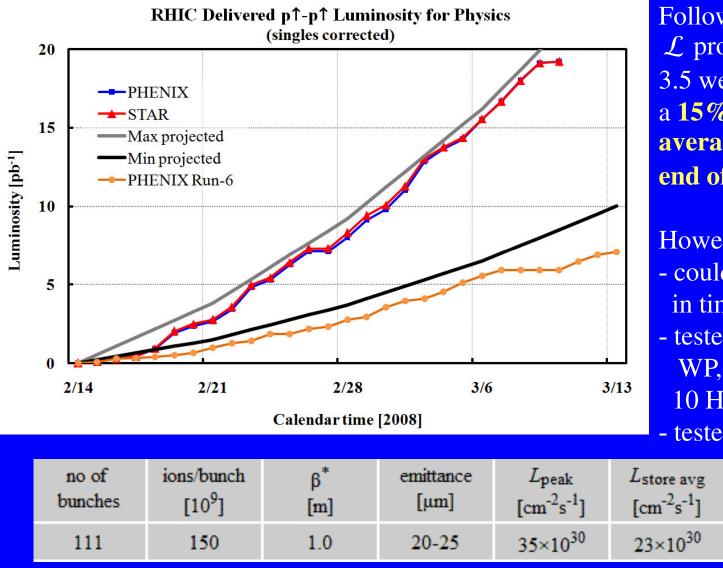
RHIC performance in Run-8, upgrades, and projections for Run-9 and beyond

Wolfram Fischer


BNL Nuclear and Particle Physics Program Advisory Committee 8 May 2008

Outline

- 1. Run-8 performance (d-Au, $p\uparrow-p\uparrow$)
- 2. Upgrades plans
 - for heavy ions
 - for polarized protons
- 3. Projections for Run-9 (Au-Au, $p\uparrow -p\uparrow$)
- 4. 5-year projections (Au-Au, p↑-p↑)
- 5. Projection for low-energy operation (Au-Au)



Run-8 d-Au operation (Run Coordinator: C. Gardner)

NATIONAL LABORATOR

Run-8 p**1**-p**1** luminosity (Run Coordinator: C. Montag)

Followed maximum \mathcal{L} projection through 3.5 weeks, yielding a 15% increase in average store \mathcal{L} over end of Run-6.

However,

- could not test all limits in time available
- tested a near integer WP, abandoned due to 10 Hz triplet vibrations - tested $\beta^* = 0.65$ m (design)

JATIONAL LABORA"

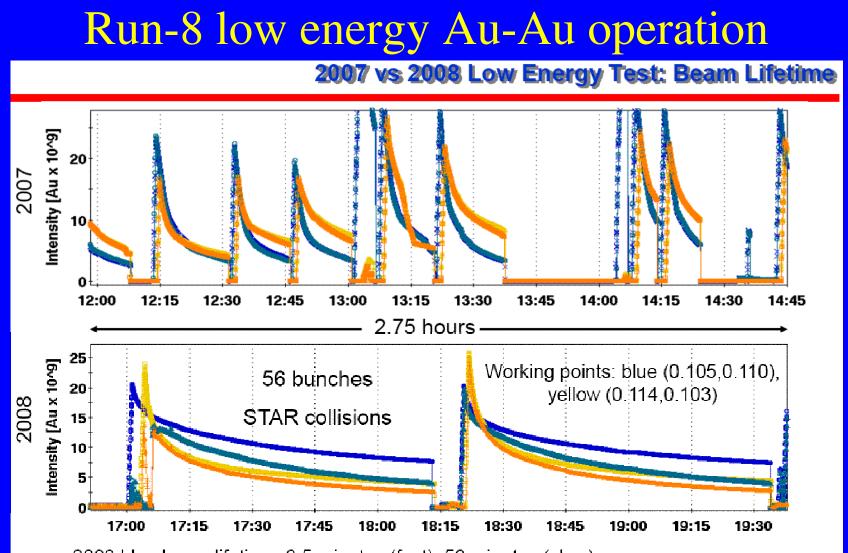
4

no of	ions/bunch	β [*]	emittance	L _{peak}	L _{store avg}	L _{week}
bunches	[10 ⁹]	[m]	[µm]	[cm ⁻² s ⁻¹]	[cm ⁻² s ⁻¹]	[pb ⁻¹]
111	150	1.0	20-25	35×10 ³⁰	23×10 ³⁰	7.5

Run-8 $p\uparrow-p\uparrow$ operation – polarization

Source

- $\mathcal{P} = 80-82\%$ in Run-8 after 85-89% in Run-7 (but changes in 200 MeV polarimeter between Run-7 and Run-8)
- Aim for $\mathcal{P} = 85\%$ in Run-9


AGS

- Tested stronger snake and near integer horizontal tune in Run-7
- Tested injection on the fly (no flat bottom) in Run-8
- In both cases significant intensity dependent polarization
- Returned to Run-6 setup with $\mathcal{P} = 55\%$ at extraction vs. $\mathcal{P} = 65\%$ in Run-6 (half of the loss due to source, other half due to only 10 days of tuning)

RHIC

- About 10% (absolute) lower \mathcal{P} than in Run-6, more problems in Yellow
- Learned that orbit angle through snakes needs better control

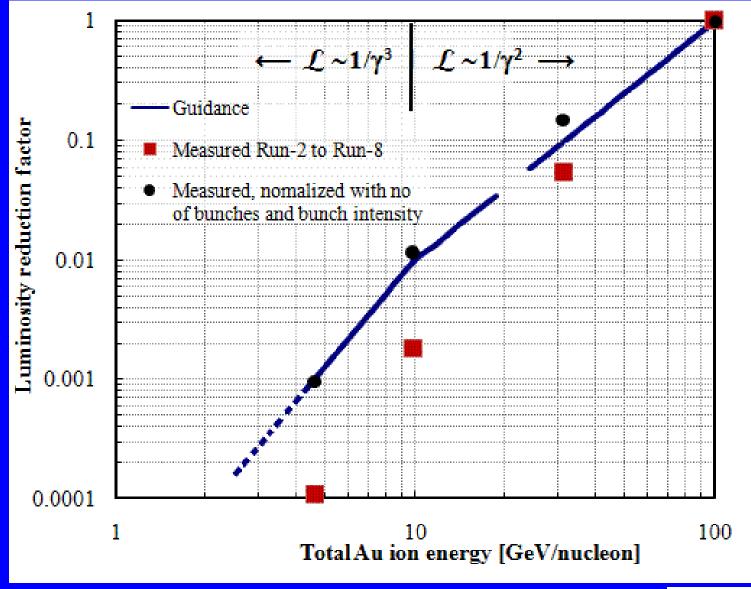
- 2008 blue beam lifetime: 3.5 minutes (fast), 50 minutes (slow)
- Sextupole reversal and elimination of octupoles clearly helped beam lifetime
- Injection efficiency and yellow beam lifetime can clearly benefit from further tuning

[T. Satogata, RHIC Retreat 2008]

6

Run-8 low energy Au-Au operation

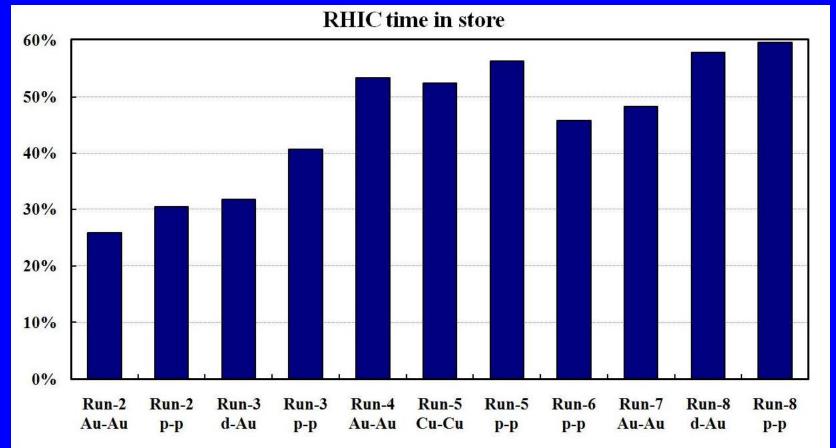
4.6 GeV/nucleon


- $\mathcal{L}_{\text{max}} = 3.5 \times 10^{23} \text{cm}^{-2} \text{s}^{-1}, \mathcal{L}_{\text{avg}} = 1.2 \times 10^{23} \text{cm}^{-2} \text{s}^{-1}$
- With $h = f_{rf}/f_{rev} = 366$ not possible to simultaneously give collisions to both STAR and PENIX
- Should be possible to increase bunch intensity and number of bunches each by about a factor 2

2.5 GeV/nucleon

- Stored some beam in Yellow (Blue ps failure prevented injection)
- Only 10% injection efficiency, very nonlinear lattice, orbit corrections very difficult, bunched beam lifetime only second
- Need to obtain better magnetic field error data (possibly new cold measurements in SMD), nonlinear online model for orbit correction

Luminosity scaling with energy



Wolfram Fischer

8

Run-8 time in store (as fraction of calendar time)

After 2 difficult years, time in store increased again. Improvements from many systems, large part from main and IR power supplies.

Reached goal of 60% time in store with protons in Run-8, but did not do rotator ramps for most part of the run (~2% of calendar time).

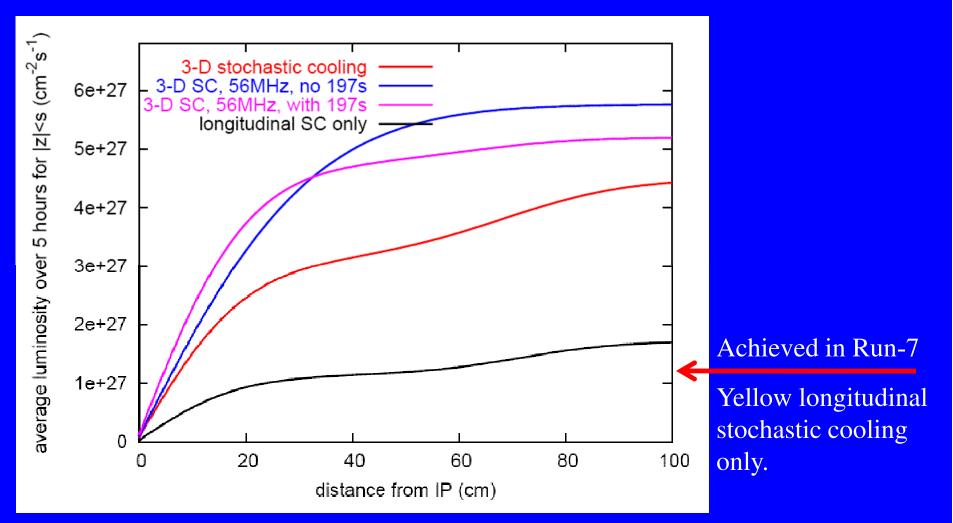
Luminosity and polarization goals

Parameter	unit	Achieved	Enhanced design	Next <i>L</i> upgrade
Au-Au operation		(2007)		(≥ 2011)
Energy	GeV/nucleon	100	100	100
No of bunches		103	111	111
Bunch intensity	10 ⁹	1.1	1.0	1.0
Average <i>L</i>	10 ²⁶ cm ⁻² s ⁻¹	12	8	40
p↑- p↑ operation		(2006/08)	(≥ 2010)	(≥ 2012)
Energy	GeV	100	100 (250)	250
No of bunches		111	111	111
Bunch intensity	1011	1.5	2.0	2.0
Average <i>L</i>	10 ³⁰ cm ⁻² s ⁻¹	23	60 (150)	300
Polarization ${\cal P}$	%	60	70	70

Upgrades for heavy ion luminosity (Au-Au) Main limits: IBS, transition instabilities

- Reduction in β^* (from 80cm to 50cm, +70%)
- Lattice with reduced IBS (+25%)
- Blue longitudinal stochastic cooling (+15%)
- <u>Transverse stochastic cooling</u> (+400%)
- Transverse damper / scrubbing (+40%)
- 56MHz SRF (+30-50%)
- EBIS, begin commissioning FY10 (reliability, U, ³He[†])

potential luminosity increases (not all independent, cannot simply multiply)

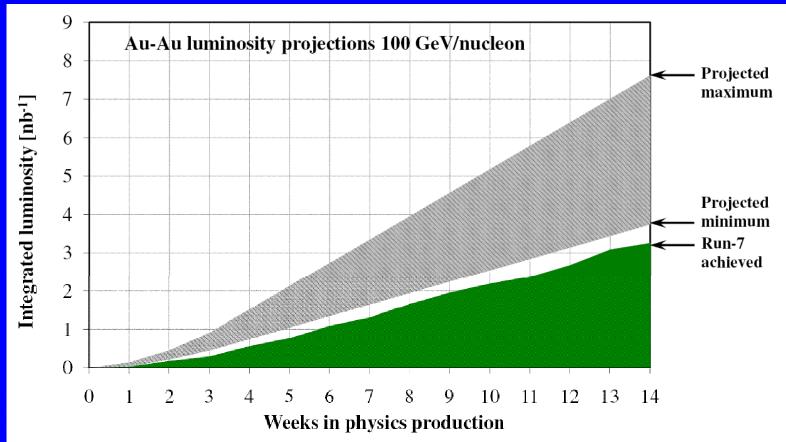

Stochastic cooling & 56 MHz SRF – upgrade plan

FY07: Yellow longitudinal sc operational in Au-Au

- FY08: Yellow longitudinal sc used again in d-Au Blue longitudinal sc installed, 56 MHz SRF AIP start
- FY09: Yellow longitudinal sc upgrade Yellow transverse sc test: Cooling in one plane sufficient? (transverse cooling can be tested in principle with low intensity proton bunch, longitudinal-transverse interaction via IBS cannot)
- FY10: 1st transverse plane sc operational
- FY11: 2nd transverse plane sc operational 56 MHz SRF commissioning

Stochastic cooling & 56 MHz SRF – luminosity increase

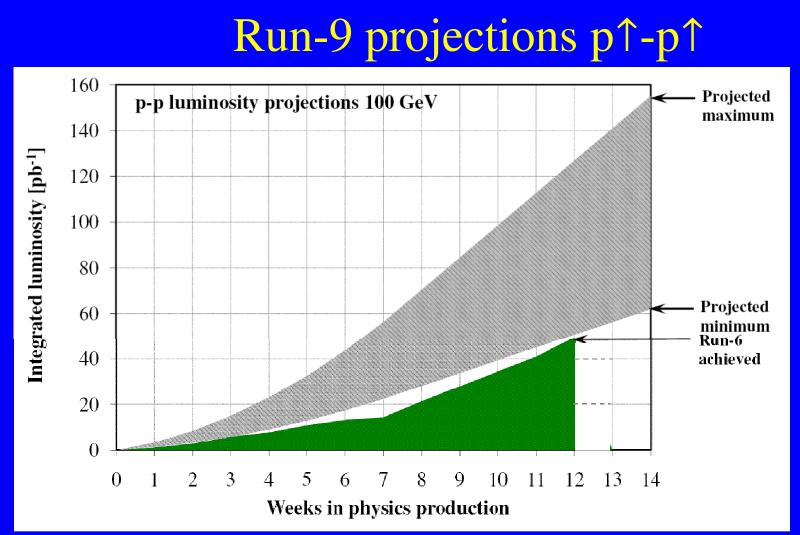
Calculation by M. Blaskiewicz.


Upgrades for polarized protons Main limits: beam-beam, p1-operation

- Reduction in β^* (from 100cm to 50cm, +70% at $\sigma_s=1m$)
- Nonlinear chromaticity correction (+30%)
- LEBT/MEBT/Booster modifications for p↑ (+20%)
- 9 MHz cavity (+25% at $\beta^* = 1m$)
- Horizontal tune jumps in AGS (P +5% absolute)
- Orbit control in RHIC snakes (avoids *P* loss in RHIC)
- Mitigate 10 Hz triplet vibration (+5-10%) (passive or active stabilization of cold masses, removal of driving term, orbit feedback)
- Near integer working point (+40%) (requires mitigation of 10 Hz triplet vibrations)
- 56 MHz cavity (operational flexibility)
- Spin flipper (R&D)
- Electron lens (R&D)
- Coherent electron cooling (R&D) Wolfram Fischer

potential luminosity gains (not all independent, cannot simply multiply)

Run-9 projections Au-Au



Main improvements for *L*:

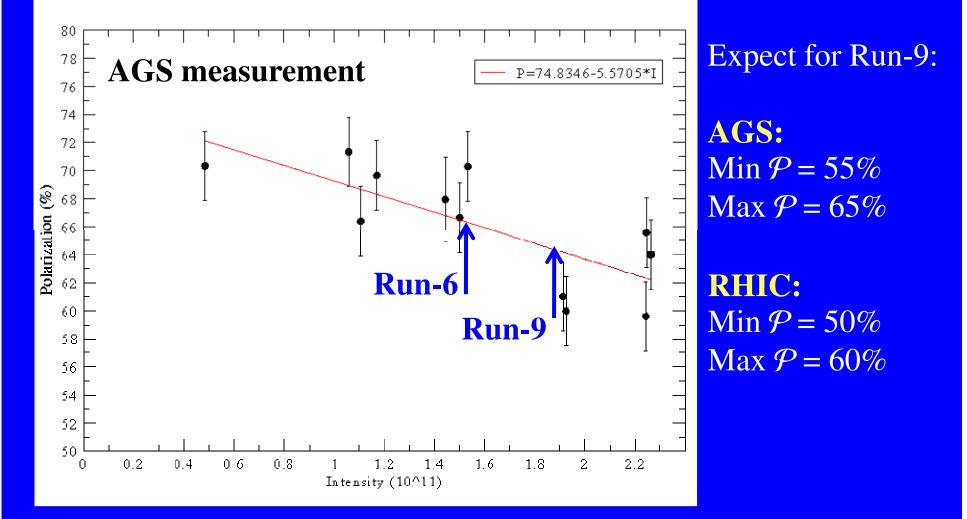
 β^* , Blue longitudinal stochastic cooling, IBS lattice, time in store

Need about 6 weeks in physics to test transverse stochastic cooling.

Main improvements:

for \mathcal{L} : β^* , 9 MHz rf system, bunch intensity

for \mathcal{P} : LEBT/MEBT/Booster injection modification, possibly

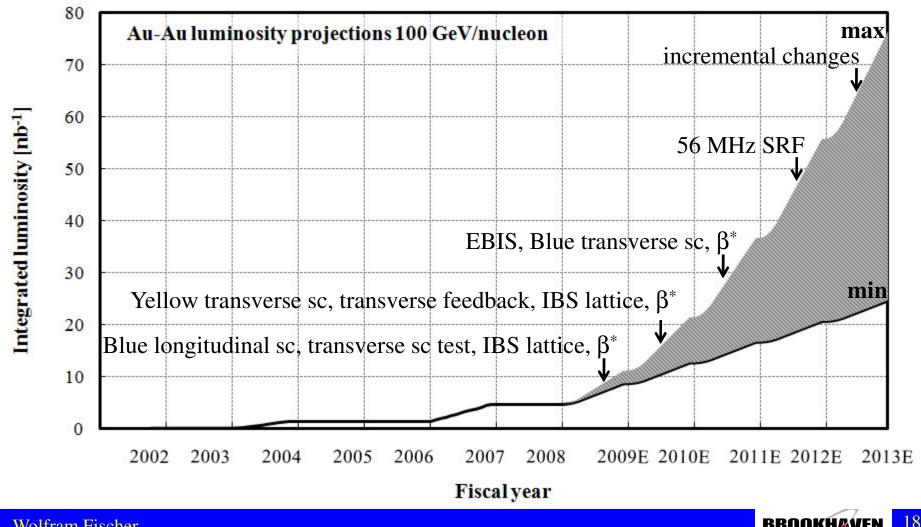

AGS hor. tune jumps, RHIC orbit control (particularly snakes)

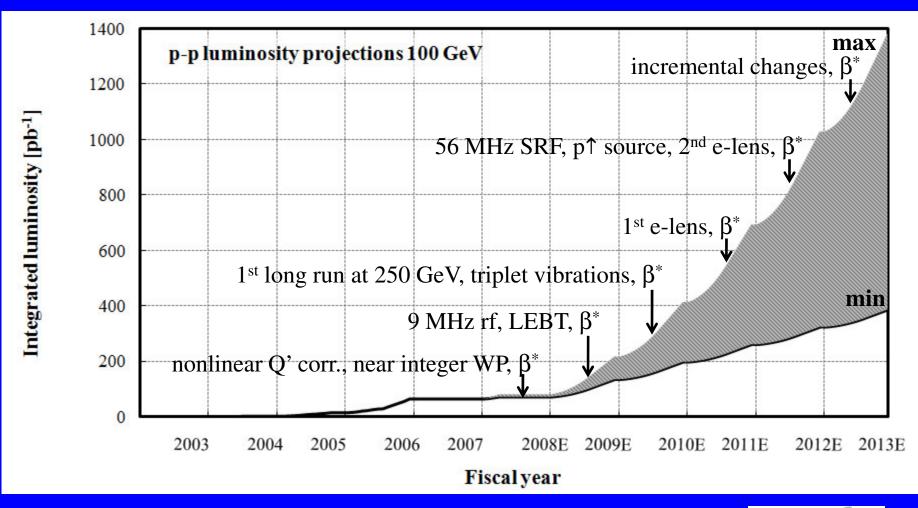
Wolfram Fischer

BROOKHAVEN 16

Run-9 projections p↑-p↑

May 15, 06 Intensity Scan


[courtesy H. Huang and A. Zelenski]


5-year projections Au-Au

5-year projections for Au-Au luminosity assuming 12 weeks of physics in every year <u>min</u>: no performance increase <u>max</u>: success of all major upgrade projects

5-year projections p↑-p↑

5-year projections for p↑-p↑ luminosity assuming 12 weeks of physics in every year <u>min</u>: no performance increase <u>max</u>: success of all major upgrade projects

Low energy Au-Au operation – allowed energies

Need h = f_{rf}/f_{rev} divisible by 3 for any experiment to operate
Need h divisible by 9 for both experiments to operate

h divisible	h	Allowed √s _{NN} [GeV]	h	Allowed √s _{NN} [GeV]	
by 9 ——	360	16.7-107	375	6.3-6.7	
	363	11.4-15.0	378	5.8-6.1	
Run-8>	366	9.0-10.5	381	5.45-5.7	
	369	7.7-8.6	384	5.15-5.38	
	372	6.9-7.4	387	4.91-5.1	← Run-

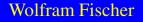
[T. Satogata, RHIC Retreat 2008, BNL C-A/AP/309 (2008)]

Low energy Au-Au operation – \mathcal{L} upgrade options

0. Improvements in the longitudinal emittance (AGS)

- For all options (E. Pozdeyev)

1. E-cooling in RHIC


- \mathcal{L} is limited by space charge, assume space charge limit $\Delta Q_{\rm sc} = 0.05$
- Expect 3-6× more \mathcal{L} (lowest to higher γ) when operating at space charge limit with non-magnetized beam [A. Fedotov et al., C-A/AP/307]

- With dc beam (Fermilab Pelletron)

- \$1.7M (direct) + \$2M (non-CAD labor), ~ 3 yrs, ~ 3-6× more \mathcal{L} (low to higher γ)
- With rf beam (56 MHz SRF gun, 703 SRF gun under construction)
 - \$3.6M (direct) + \$1M (non-CAD labor), ~ 3 yrs, ~ 3-6× more \mathcal{L} (low to higher γ)

2. Top-off mode

- Replace 1-4 RHIC bunches every AGS cycle, beam stays in RHIC only 3-7 min
- Needs modification of RHIC injection and extraction kickers (appears feasible)
- Needs experiments to stay on during continuous refill (likely ok, test desirable)
- \sim \$0.5-1.0M (not well estimated), ~ 1 yr, ~ 2-3× more \mathcal{L}

Summary

Run-8

- 10× larger delivered d-Au luminosity than Run-3
- With 3.5 weeks in physics, only modest (15%) increase in average p[↑]-p[↑] luminosity, lower polarization than in Run-6

Run-9, aim for:

- ~2× larger luminosity (both Au-Au and p-p)
- Slight increase in \mathcal{P} over Run-6, more stable \mathcal{P} in RHIC

5-year outlook, aim for:

- 3.5× larger Au-Au luminosity
- $5 \times \text{larger p} p \uparrow \text{luminosity}$ (excl. γ -gain, incl. lower β^* at 250 GeV), $\mathcal{P} + 10\%$ absolute

Low energy Au-Au operation

- Demonstrated operation at 4.6 GeV/nucleon (some beam stored at 2.5 GeV/nucleon)
- Studying e-cooling in RHIC and top-off mode for \mathcal{L} increase

