STAR Physics Program

STAR Five-year Beam Use Request for FY09-13

Nu Xu for the STAR Collaboration

Nuclear Science Division Lawrence Berkeley National Laboratory

Outline

1) Introduction

2) STAR Physics Results

- Spin:
- Heavy Ion:
- Run 8 performance:

3) STAR Hardware Upgrades

- DAQ1000: - MRPC TOF:

4) BUR for Runs 09 - 13

- Runs 9 -10: - Runs 11 - 13:
- Runs 11 13:

5) Summary

1) Heavy-ion program

- Study medium properties, EoS
- pQCD in hot and dense medium

2) RHIC beam energy scan

- Search for critical point
- Chiral symmetry restoration

Longitudinal and transverse spin programs
 Study *proton intrinsic properties*

2) Forward programs

- Study low-x properties and search for **CGC**

Tagged forward protons

- Study elastic and inelastic processes
- Investigate *gluonic exchanges* and search for *gluonic matter*

STAR Detector

Selected STAR Spin Results

STAR Spin Results

STAR Transverse Spin Results

 $A_N(x_F)$ for Forward π^0 Production

Selected STAR Heavy Ion Results

Open Charm and J/ ψ R_{AA}(p_T)

STAR: sub. to PRL, arXiv: 0805.0364

Heavy flavor hadrons freeze-out earlier than light flavor (u,d,s) hadrons

STAR

Extending to Higher Mass: Υ

Sequential dissociation of quarkonia is sensitive to energy density of plasma

 $\Upsilon (1S+2S+3S) \rightarrow e^+e^-$

Bottom Decay Electron Study

- EMC trigger + SSD+SVT vertex cuts: high energy electrons from Bottom
- In the future: HFT will provide a much more powerful tool for studying heavy flavor hadrons

Results from Run 8

Run 8: d-Au and Polarized p+p

۶

FMS: calibration in progress

Low Energy Test Run (9 GeV)

- 1) ~ 3500 collisions collected
- 2) Gain understanding of triggering issues
- 3) Determine Luminosity: rate ~ 0.6 Hz at 9 GeV
- 4) STAR studying the following:

Particle identification in TPC; total charged multiplicity

 π - π interferometry, particle ratios; v₁ and v₂

5) Physics ready with 2 - 4 Hz collisions

Ready for Physics at Energy Scan

PID will be significantly extended using TOF

STAR Upgrades

STAR Detector

STAR DAQ1000

CERN/ALICE Altro chip development

Run 8 tests:

- One sector of the TPC (1/24) instrumented with DAQ1000 electronics
- Routine operation for physics.
- Speed test: operated at 1 kHz with only 5-7% dead time
- Full TPC will be instrumented before Run 9

STAR MRPC ToF

Run 8 test:

- Five trays of ToF system installed, commissioned, and used for physics
- Behind sector with DAQ1000 TPC electronics. Routine operation for physics.
- 90 (of 120) ToF trays to be installed for Run 9 and the full ToF (120) will be completed before Run 10

STAR Upgrade Timeline

Upgrade	Completion	Key physics measurements
FMS	Completed 2008	(a)Transverse asymmetry at forward rapidity(b) CGC
TPC DAQ (DAQ1000)	Summer 2008 Ready for Run 09	Large data set, minimal dead time
MRPC TOF	Summer 2009 Full TOF ready for Run 10	Full PID in full azimuthal acceptance (90/120 trays will be used in Run 9) TOF capability is critical for the energy scan
FGT	Summer 2010 Ready for Run 11	Forward W [±] for flavor separated quark polarization
HFT	Summer 2011 Ready for Run 12	(a) Precision hadronic ID for Charm and Bottom hadrons(b) Charm and Bottom hadron energy loss and flow

- 1) Physics
- 2) Upgrades technically driven schedule
- 3) Request for new measurements

The Frontiers of Nuclear Science

(I) Systematically study the partonic medium properties at RHIC

(II) Search for QCD critical point

(III) Study proton intrinsic structure

STAR

Run 9: 25 Cryo-week (scenario I)

STAR priorities for Runs 9 and 10:

(1) 200 GeV longitudinally polarized p+p - $\Delta g(x)$

(2) Beam energy scan down to $\sqrt{s_{NN}} \sim 5-6 \text{ GeV}$

- Search for the QCD critical point

** C-AD transverse stochastic cooling test important!

Run	Energy (GeV)	System	Time	Goal
9	$\sqrt{s} = 200$	p _→ p _→	12 week	$50 \text{ pb}^{-1} \text{ P}^4 \text{L} 6.5 \text{ pb}^{-1}$
	$\sqrt{s} = 500$	$p_{\uparrow}p_{\uparrow}$	2 week	Commissioning
	$\sqrt{s} = 200$	$p_{\uparrow} p_{\uparrow}$	¹ / ₂ week	pp2pp
	$\star \star \sqrt{s_{\rm NN}} = 200$	Au+ Au	3 week	0.3B minbias, 0.5 nb ⁻¹
	$\sqrt{s_{\rm NN}} = 5$	Au+ Au	¹ / ₂ week*	Commisioning
10	$\sqrt{s_{NN}} = 39 - 6.1$	Au + Au	14 week	1 st energy scan
	$\sqrt{s_{\rm NN}} = 5$	Au + Au	1 week	Commisioning
	$\sqrt{s_{NN}} = 200$	Au + Au	2 week	200M central
	$\sqrt{s_{NN}} = 200$	Au + Au	1 week	50M central
	$\sqrt{s} = 200$	$p_{\rightarrow} p_{\rightarrow}$	¹ / ₂ week	pp2pp
	$\sqrt{s} = 500 \text{ or } 200$	$p_{\uparrow} p_{\uparrow} \text{ or } p_{\rightarrow} p_{\rightarrow}$	4 ½ week	Spin studies

Run 9: 16 Cryo-week (scenario II)

Run	Energy (GeV)	System	Time	Goal
9	$\sqrt{s} = 200$	p _→ p _→	11 weeks	50 pb ⁻¹ , P ⁴ L 6.5 pb ⁻¹
	$\sqrt{s} = 200$	$p_{\uparrow}p_{\uparrow}$	¹ / ₂ week*	pp2pp
10	$\sqrt{s_{NN}} = 39 - 6.1$	Au+ Au	12 weeks	1 st energy scan
	$\sqrt{s_{\rm NN}} = 5$	Au + Au	1 week	Commissioning
	$**\sqrt{s_{NN}} = 200$	Au + Au	$3\frac{1}{2}$ weeks	0.5B events, 0.5 nb ⁻¹
	$\sqrt{s_{NN}} = 200$	Au + Au	1 week	50M central
	$\sqrt{s} = 500$	$p_{\uparrow} p_{\uparrow} \text{ or } p_{\rightarrow} p_{\rightarrow}$	5 weeks	Commissioning
	$\sqrt{s} = 200$	$p_{\uparrow} p_{\uparrow} \text{ or } p_{\rightarrow} p_{\rightarrow}$	½ week	pp2pp

STAR priorities for Runs 9 and 10:

- (1) 200 GeV longitudinally polarized p+p $\Delta g(x)$
- (2) Beam energy scan down to $\sqrt{s}_{\rm NN}$ ~ 5-6 GeV
 - Search for the QCD critical point

** C-AD transverse stochastic cooling test important!

Goals for taking: Run 9 ~ 16* Run 6

Run 9: STAR bottom line is to collect <u>FoM: 6.5 pb</u>⁻¹ *inclusive jet, di-jets, γ-jet... analysis*

Di-jet Sensitivity in Run 9

•

•

- Di-jets provide **direct access to** $\Delta g(x)$ in leading order
- Full NLO asymmetry calculations for di-jets are similar to LO estimates
 - Sensitivity is shown for FoM = P⁴L = 6.5 pb⁻¹
 - Significant discrimination amongst allowed models

Significant contributions at 200 GeV from quark-gluon scattering with highly polarized quarks.

STA

Search for QCD Critical Point

STAR Beam Use Request FY10

√s _{NN} [GeV]	μ _B [MeV]	Rate [Hz]	Goal [Events]	Duration [Days]
5.0	550	0.5		7
6.1	491	1.4	1 M	20
7.7	410	2.7	2 M	20
8.6	385	4	2 M	15
12.3	300	10	5 M	15
17.3	229	2 5	10M	12
27	151	30	10M	7
39	112	50	10M	6

Key measurements:

- (1) All PID hadron spectra and v₂
- (2) K/ π , <p_T> ... fluctuations

Strategy:

- (1) From high to low energy, disappearance of high energy density phenomena (controlled experiment)
- (2) Cover SPS range $\sqrt{s_{NN}} = 5 20$ GeV, look for the onset of de-confinement

Observables and Advantages

Advantages at STAR:

- Large acceptance: full azimuthal coverage and |y| < 1.0
- Clean particle identification: (TPC, ToF, EMC)
- Acceptance does *not* change with beam energy, systematic errors under control
- High potential for discovery

Tagged Forward Protons

Elastic and Inelastic Processes

Central Production: RP + ToF; Tracks in the TPC full azimuthal acceptance

In terms of QCD, Pomeron exchange consists of the exchange of a color singlet combination of gluons. Hence, triggering on forward protons at high (RHIC) energies predominantly selects exchanges mediated by *gluonic matter*.

Status of pp2pp

- Roman Pots (RP) were installed East and West of STAR (Phase I);
- pp2pp integrated into trigger and DAQ;
- Inserted pots into the beam pipe during last 2 hours of Run 8 (pp):
 - Triggered on elastic and inelastic coincidences in pp2pp RP
 - No impact on background levels in STAR mid-rapidity detectors

Phase II: Install RP between DX-D0 magnets, allowing to trigger on forward protons with standard tune, hence taking data with STAR without need for dedicated time.

A dedicated **1/2** -1 week run, including setup of $\beta^*=20m$ optics, and about 30 hrs of data taking will produce:

- 1. Elastic scattering:
 - 100% acceptance for elastic scattering for 0.003 < |t| < 0.024;
 - **40×10**⁶ elastic events: $\Delta b=0.31$ (GeV/c)⁻², $\Delta \rho=0.01$, $\Delta \sigma_{tot} = 2-3$ mb;
 - In eight t subintervals we shall have ~ 5×10^{6} events in each resulting in corresponding errors $\delta A_n = 0.0017$, $\delta A_{nn} = \delta A_{ss} = 0.003$.
- **2. DPE process:** (luminosity 2×10²⁹ cm⁻²sec⁻¹)
 - About **1**·**10**⁶ events with the proton tag on each side, proton in either pot;
 - 3.10⁵ DPE events with fully reconstructed proton momentum.

STAR

Runs 11 - 13 (30 cryo-week/yr)

Run	Energy (GeV)	System	Time	Goal	I
11	$\sqrt{s} = 200$	$p_{\uparrow} p_{\uparrow} \text{ or } p_{\rightarrow} p_{\rightarrow}$	6 week	20-30 pb ⁻¹	İ
	$\sqrt{s} = 500$	$p_{\uparrow} p_{\uparrow} \text{ or } p_{\rightarrow} p_{\rightarrow}$	15 week	150 pb ⁻¹	FG
	$\sqrt{s_{NN}} = 200$	U + U	2 week	Commissioning	ĺ
12	$\sqrt{s_{\rm NN}} = 200$	Au+ Au	12 week	$0.5B \text{ minbias}, 5 \text{ nb}^{-1}$	I HF'
	$\sqrt{s_{ m NN}} = 39$ - 5	Au+ Au	13 week	2 nd energy scan	
13	$\sqrt{s} = 200$	$p_{\uparrow} p_{\uparrow} \text{ or } p_{\rightarrow} p_{\rightarrow}$	13 week	$2B \text{ minbias}, 100 \text{ pb}^{-1}$	
	$\sqrt{s} = 500$	$p_{\uparrow} p_{\uparrow} \text{ or } p_{\rightarrow} p_{\rightarrow}$	12 week	300 pb ⁻¹	

Run 11: (i) 1st measurement of flavor dependence of sea q/anti-q polarization in the proton at $\sqrt{s} = 500 \text{ GeV } p+p \text{ collisions}$ (ii) HFT engineering prototyping in $\sqrt{s_{NN}} = 200 \text{ GeV } U+U \text{ collisions}$

Run 12: Anticipating RHIC-II high luminosity

- (i) 1st HFT physics measurements of charm hadron $v_2(p_T)$ and $R_{CP}(p_T)$ in $\sqrt{s_{NN}} = 200 \text{ GeV Au+Au}$ collisions
- (ii) Focused energy-scan in the search for the QCD critical point.
 - Prior accelerator development is crucial at $\sqrt{s_{NN}} = 5-6 \text{ GeV}$
- (iii) gamma-jet and quarkonia states measurements

Run 13: (i) HFT physics reference measurement of charm hadron spectra in $\sqrt{s} = 200$ GeV pp collisions; complete remaining $\sqrt{s} = 200$ GeV spin milestones. (ii) Measurement of the x dependence of W production at $\sqrt{s} = 500$ GeV

Future Physics Goals

Plan to be accomplished In Runs 11-13

STAR

(1) 200 GeV longitudinally polarized p+p

- ∆g(x)

(2) Beam energy scan down to $\sqrt{s_{_{\rm NN}}} \sim 5-6~{\rm GeV}$

- Search for the QCD critical point
- (3) **Top energy high statistics** Au+Au data set and *transverse stochastic cooling* test
- (4) 500 GeV p+p collision
- (5) pp2pp program

Summary

- Without high stat. 200 GeV
 p_⇒+p_⇒, we won't know ∆g(x)
- Without energy scan to 5 GeV, we won't find the QCD critical point

STAR at the QCD Lab:

- Unique physics program
- National priorities
- Must be done in a timely fashion