RHIC performance and upgrade plans

IP10

IP8

LINAC

B

Ham The state of

NSRI

AGS

OKH*M*VEN

NATIONAL LABORATORY

Booster

Target

Wolfram Fischer

BNL

15 June 2009 BNL NPP PAC Meeting

IP2

Content

Heavy ion operation

- Run-7 (Au-Au) / Run-8 (d-Au) performance
- Run-10 upgrade plans and projections
 - High energy (100 GeV/nucleon)
 - Low energy (10 GeV/nucleon)
- Longer-term upgrade plans

Polarized proton operation

- Run-9 performance
- Run-11 upgrade plans and projections
- Longer-term upgrade plans

Luminosity and polarization goals

Parameter	unit	Achieved	AchievedEnhanceddesign	
Au-Au operation		(2007)		(2012)
Energy	GeV/nucleon	100	100	100
No of bunches	•••	103	111	111
Bunch intensity	109	1.1	1.0	1.0
Average L	10 ²⁶ cm ⁻² s ⁻¹	12	8	40
p↑- p↑ operation		(2009)	(2011/12)	(2014)
Energy	GeV	100 / 250	100 / 250	250
No of bunches	•••	109	109	109
Bunch intensity	1011	1.3 / 1.1	1.3 / 1.5	2.0
Average L	10 ³⁰ cm ⁻² s ⁻¹	24 / 55	(30) 150	300
Polarization P	0 ⁄0	55 / 34	70	70

Wolfram Fischer

Had previously a goal of 60 here.

Run-7 Au-Au Run Coordinator: A. Dress

Delivered 2.6 more luminosity than in Run-4

Main improvements:

- new stripping foils (BtA and AtR)
- Au³¹⁺ in AGS
- 2.3x no of bunches
- reduction in β^*
- first use of long. stochastic cooling in Yellow

no of	ions/bunch	β [*]	emittance	L _{peak}	L _{store avg}	L _{week}
bunches	[10 ⁹]	[m]	[µm]	[cm ⁻² s ⁻¹]	[cm ⁻² s ⁻¹]	[µb ⁻¹]
103	1.1	0.83/0.77	17-35	30×10 ²⁶	12×10 ²⁶	380

Wolfram Fischer

Run-8 d-Au Run Coordinator: C. Gardner

Wolfram Fischer

NATIONAL LABORATORY 5

RHIC calendar time in store

After improvements in Run-8, time in store fell back in Run-9. Should assume 55% on average for future runs.

Heavy ion operation – upgrades for Run-10

Run Coordinator: Kevin Brown

- Stochastic cooling:
 - Yellow longitudinal upgraded
 - Blue longitudinal first time in heavy ion operation
 - Yellow vertical first time in heavy ion operation
 - Blue vertical first time use
- Lattice changes compared to Run-7/Run-8
 - β^* reduction possibly as low as 0.5 m
 - Lattice with reduce IBS growth rate (like Run-8/Au)
- No significant change in transition crossing scheme foreseen so far
 - Will be main limit for intensity
- Ongoing effort to maintain/improve reliability

Run-10 stochastic cooling in RHIC

4 systems to (re)commission – at least 1 week per system

Stochastic cooling & 56 MHz SRF – luminosity increase

Calculation by M. Blaskiewicz.

Wolfram Fischer

Run-10 Au-Au luminosity projections 100 GeV/nucleon

Assume 4 weeks to ramp-up for min, and 8 weeks for max.

Run-10 Au-Au low energy operation

Run Coordinator: Todd Satogata

2007 vs 2008 Low Energy Test: Beam Lifetime

2008 blue beam lifetime: 3.5 minutes (fast), 50 minutes (slow)

- Sextupole reversal and elimination of octupoles clearly helped beam lifetime
- Injection efficiency and yellow beam lifetime can clearly benefit from further tuning

Run-10 low energy projections – T. Satogata, CPOD

- From $\sqrt{s_{NN}}$ = 9 GeV 2008 experience and expected tuning improvements
 - Assumes 75% time in physics during running time
 - Event rates scale as γ^3 below injection, γ^2 above injection ($\sqrt{s_{NN}}$ = 23.5 GeV)
- Every additional \sqrt{s}_{NN} data point close to doubles required total run time
- $\sqrt{s_{NN}} = 12 \text{ GeV}$ precludes optimized luminosity at both experiments
- Also like 3 days development time for electron cooling projections
- There is no ordering preference between 200 GeV and low energy runs

√s _{nn} [GeV]	μ _Β [MeV]	<event rate=""> [Hz]</event>	Days/ Mevent	# events	# beam days phys+setup	Total Integrated run time
5.0	535	0.7	21	5M	105+5	(33 weeks)
6.1	470	1.4	11.3	5M	57+4	(17 weeks)
7.7	405	2.7	5.7	5M	29+3	(9 weeks)
8.8	370	4	3.9	5M	19+2	(4 weeks)
12	295					
18	210	>30	0.5	5M	3+1	(1 week)
28	145	>60	<<1	5M	1+2	

From K. Rajagopalan (2006), STAR Beam Use Proposal (2007)

Heavy ions – further upgrade plans

• EBIS

- CD-4 planned for September 2010
- Lower intensity U operation later in Run-11 may be possible
- Horizontal stochastic cooling
 - Received \$4M from stimulus funds
 - Completion planned for end of 2011
 - Should reduce the transverse cooling times by factor 2

• 56 MHz Superconducting RF

- Shorter vertex and reduced longitudinal migration
- 30-50% increase in luminosity depending on vertex cut
- Expect operation in 2012

Transition crossing feedback

- Electron cloud enhanced fast transverse instability at transition is main intensity limit
- Fast transverse feedback needs R&D (also pursued for SPS, US LARP/CERN)
- Electron cooling for low energy operation
 - Use of Fermilab pbar cooler, expect 3-6 more L (low to higher γ)
 - With start in 2009, completion 2014

Electron Beam Ion Source (EBIS)

J. Alessi et al.

RHIC

EBIS

10

20

1.5

11

5.5 (10 A)

 ≤ 40

3.4

10

CD 4 planned for Sep. 2010	pulse length yield Au ³²⁺	
Lower intensity U operation in 2011 p	ossible	
Full intensity operation in 2012		

Test EBIS

achieved 10

20

0.7

5.1

3.4 (8 A)

20

> 1.5

56 MHz SRF

I. Ben-Zvi et al.

- quarter wave Ni resonator
- common to both beams, IR4
- beam driven
- 56 MHz, 2 MV gives large bucket area
- better longitudinal containment of Au ions
- 30-50% more luminosity at 100 GeV/nucleon Au
- Expect operation in Run-12

Copper prototype

Low energy electron cooling

Fermilab Pelletron

- Can use Fermilab Pelletron as e-source
- Expect factor 3-6 gain in integrated L beams are space charge dominated, assume ΔQ_{sc} = 0.05, may be too conservative
- Likely required for very low energies
- Need to finish other AIPs to release engineering resources
- With start in 2009, could be operational in 2014

Luminosity and polarization goals

Parameter	unit	Achieved	Enhanced design	Next L upgrade
Au-Au operation		(2007)		(2012)
Energy	GeV/nucleon	100	100	100
No of bunches	•••	103	111	111
Bunch intensity	109	1.1	1.0	1.0
Average L	10 ²⁶ cm ⁻² s ⁻¹	12	8	40
p↑- p↑ operation		(2009)	(2011/12)	(2014)
Energy	GeV	100 / 250	100 / 250	250
No of bunches	•••	109	109	109
Bunch intensity	1011	1.3 / 1.1	1.3 / 1.5	2.0
Average L	10 ³⁰ cm ⁻² s ⁻¹	24 / 55	(30))150	300
Polarization P	%	55 / 34	70	70

Run-9 250 GeV p -p

Run-9 100 GeV p -p Run Coordinator: C. Montag

no of bunches	ions/bunch [10 ⁹]	β [*] [m]	emittance [µm]	L _{peak} [cm ⁻² s ⁻¹]	L _{store avg} [cm ⁻² s ⁻¹]	L _{week} [pb ⁻¹]
109	1.1	0.7	14-20	42	20	6.0

Average store polarization: 56 in Blue, 57 in Yellow (online H-jet measurements)

Main limits for p -p performance and possible solutions

1.AGS : proton bunches with high intensity, high polarization and low emittance

horizontal tune jump system source upgrade

2.RHIC: polarization transmission to 250 GeV near integer working point, requires 10 Hz orbit feedback

3.RHIC: luminosity lifetime at 100 GeV reached lower β^* limit at this energy

(not necessarily a problem at 250 GeV)

4.RHIC: Yellow ramp transmission for high intensities 9 MHz rf system

Wolfram Fischer

Further upgrades for p -p performance

- Global 10 Hz orbit correction system
 required to operate near integer working point
- Polarimetry

CNI polarimeter (rate dependence, setup time) additional PHENIX style polarimeter in IP10 with additional collision)

- More reliable orbit correction in store tighter tolerances at 250 GeV (collisions, collimators) due to smaller beam sizes
- Collimation efficiency
- $\ \ \beta^*$ reduction to 0.5 m
- Beam dump
 Q7 quenched with normal beam dumps
- Spin flipper
 need full commissioning
- Intensity limits on ramp Limits from e-cloud(?) at beginning of ramp Limits from beam losses (flattop-ramp ps switchover, beta-squeeze, ...)
- 24 h vertical orbit motion
- Maintain/improve reliability
- Electron lenses (increase of beam-beam parameter now at limit) increase of beam-beam parameter – now at limit

Polarized protons from AGS

Intensity dependent polarization in AGS in Run-6 and Run-9

22

Courtesy H. Huang

RHIC polarization transmission to 250 GeV

At current working point very limited tune space between 2/3 (beam loss) and 7/10 (polarization loss) on ramp. Explore near-integer working point (requires 10 Hz orbit feedback).

Courtesy M. Bai

RHIC luminosity lifetime at 100 GeV

Luminosity fitted to $L(t) = A1^{exp(-t/t1)} + A2^{exp(-t/t2)}$ [first 3h]

Re-established beam lifetimes with $\beta^* = 1.0$ => Reached lower β^* limit at 100 GeV

RHIC Yellow ramp transmission

Sharp drop in Yellow ramp transmission for 150 10¹¹ p

Better transmission for same intensity in fewer bunches suggest electron clouds as contributing mechanism, can be mitigated with 9 MHz rf

25

Wolfram Fischer

Run-11 p -p luminosity projections 100 GeV

Weeks in physics production

Expect store polarization of 50-65%, and average store luminosity of up to 30 10³⁰ cm⁻²s⁻¹.

Run-11 p -p luminosity projections 250 GeV

Weeks in physics production

Expect store polarization of 35-50%, and average store luminosity of up to 100 10³⁰cm⁻²s⁻¹. Higher polarization likely requires new working point.

Electron lenses in RHIC

Basic idea:

In addition to beam-beam collisions in IP6 and IP8 (with **positively** charged beam) have another collision at IP10 (with a **negatively** charged beam) with the same amplitude dependence.

Aim to remove effect of on beam-beam collision.

28

[Y. Luo and W. Fischer, "Outline of using an electron lens for the RHIC ...", BNL C-AD/AP/284 (2007)] Wolfram Fischer

Electron lenses – estimate of luminosity gain

Electron lenses in RHIC

Wolfram Fischer

Summary

Heavy ion operation

- For 100 GeV/nucleon in Run-10: 0.4 1 nb⁻¹/week
 - Longitudinal and vertical stochastic cooling in both rings
- β^* reduction from 0.85 m to 0.50 m
- For 10 GeV/nucleon in Run-10: table on slide 12 (storage rf system can be used with Au down to 19.5 GeV/nucleon)
- Longer-term upgrades:
- EBIS (2011)
- Horizontal stochastic cooling in both rings (2012)
- 56 MHz superconducting RF (2012, 30-50% increase in luminosity)
- Electron cooling for low energy operation (2014)

Polarized proton operation

- For 100 GeV in Run-11: 6 10 pb⁻¹/week, P = 50 65%
- For 250 GeV in Run-11: 18 34 pb⁻¹/week, P = 35 50%
 - AGS horizontal tune jump system
 - Near integer working point (requires 10 Hz orbit feedback)
 - 9 MHz rf system
- Longer-term upgrade:
 - Polarized source upgrade (2012)
 - Electron lenses (2012)

