RHIC performance in Run-10 Projected performance in Run-11 and Run-12

IP10

Targe

IP2

Wolfram Fischer

Content

RHIC Au-Au performance in Run-10

- High E: s_{NN} = 200 GeV (high = 100 GeV/nucleon)
- Medium E: $s_{NN} = 62.4, 39 \text{ GeV}$
- Low E: $s_{NN} = 7.7, 5.75, 5.0 \text{ GeV}$ (low = below nominal injection)

Projected performance in Run-11

- Heavy ions (Au at various energies, U at high energy)
- Polarized protons at s = 500 GeV

Projected performance in Run-12

RHIC luminosity and polarization goals

Parameter	Unit	Achieved	Enhanced design	Next <i>L</i> upgrade
Au-Au operation		(2010)		(≥2012)
Energy	GeV/nucleon	100	100	100
No of bunches		111	111	111
Bunch intensity	109	1.1	1.0	1.0
Average L	10 ²⁶ cm ⁻² s ⁻¹	20	8	40
<u>p↑- p↑ operation</u>		(2009)	(≥2011/12)	(≥2014)
Energy	GeV	100 / 250	100 / 250	250
No of bunches		109	109	109
Bunch intensity	1011	1.3 / 1.1	1.3 / 1.5	2.0
Average L	10 ³⁰ cm ⁻² s ⁻¹	24 / 55	(30))150	300
Polarization P	%	55 / 34 /	70	70

Had previously a goal of 60 here – but low luminosity lifetime with low β^* . BROOKHAVEN Wolfram Fischer

3

Run-10 main upgrades and events

- Yellow 10 o'clock snake out for repair
- Start-up ramp-up in 3.5 weeks
 (1.5 weeks longer than plan largely due to unfinished shut-down work)
- Lattice with higher phase advances in both rings (IBS suppression)
- Separation of γ_{tr} by 1.2 units (e-cloud reduction at transition)
- 2 mrad crossing angle in all IPs without collision (DX training reduction)
- New auto transformer in Yellow (reduction of flattop-to-ramp main magnet power supply transients test for pp in Run-11)
- Tune and coupling feedback on every development ramp
- First successful ramp (ever in any accelerator) with simultaneous orbit, tune, coupling and chromaticity feedbacks
- Tested 1 Hz orbit feedback (ramp and store)
- Tested 10 Hz orbit feedback (store) (counteracts mechanical triplet vibrations)
- First use of Yellow dipole feedback at transition (more reproducible transition crossing)
- Started with $\beta^* = 60$ cm, raised to 70 cm due to chromatic abberations

ATIONAL LABORATORY

• First use of vertical stochastic cooling, simultaneous with longitudinal

RHIC heavy ions – luminosity evolution

 $L_{NN} = L N_1 N_2$ (= luminosity for beam of nucleons, not ions)

RHIC calendar time in store (high energy parts only)

Time in store settled around 55% of calendar time. Expect to hold this value in the future.

RHIC – 3D stochastic cooling for heavy ions

M. Brennan, M. Blaskiewicz, F. Severino, Phys. Rev. Lett. 100 174803 (2008); PRST-AB, PAC, EPAC 7

RHIC – bunched beam stochastic cooling for heavy ions

• Longitudinal cooling since 2007

M. Brennan M. Blaskiewicz et al.

- First transverse (vertical) cooling in 2010
- So far stochastic cooling increased average store luminosity by factor 2
- Expect another factor 2 with full 3D cooling

Issues:

- Vacuum leaks at feedthroughs
- Mechanical motion of long. kickers
- Cross-talk between Blue and Yellow vertical system (addressed by 100 MHz shift in Blue)
- Construction, installation, and commissioning of horizontal systems

Wolfram Fischer

Upgrades for heavy ions and polarized protons - feedbacks

- 1 Hz global orbit feedback (ramp and store)
- 1 Hz orbit, tune, coupling, chromaticity feedback (ramp)
- 10 Hz local orbit feedback (store)

M. Minty A. Marusic R. Michnoff et al.

First ramp with simultaneous orbit, tune, coupling and chromaticity feedback (both beams)

Run-10 Au-Au medium and low energies

RHIC – low energy heavy ion operation (T. Satogata et al.)

In search of critical point in QCD phase diagram, energy scan now extends below nominal injection energy (which is already 30% below design)

Effects to contend with (numbers for 20% nominal (Bp)

- Large beam sizes (longitudinal and transverse) controlling losses becomes critical
- Large magnetic field errors $(b_3 \sim 10, b_5 \sim 6 \text{ units})$ from persistent currents in superconducting magnets)
- Intrabeam scattering (debunching ~min)
- Space charge (△Q_{Laslett} ~ 0.1 new regime for collider)
- Beam-beam (ξ/IP ~ 0.003)
- Low event rates (~ 1 Hz)

Full energy injection allows for short stores

- At 38% of nominal injection (Bρ)
- Could not operate at 20% of nominal injection
 (s_{NN} = 5 GeV)
- Need guidance for importance of increased luminosity (factor 3-6) at low s_{NN} for electron cooling effort

Wolfram Fischer

Run-11 and Run-12 working assumptions

(from BUPs, subject to discussion and change)

Requests for Run-11

- Au-Au : s_{NN} = 200 GeV
- Au-Au : s_{NN} = 18, 27 GeV
- U-U : s_{NN} 200 GeV
- p -p : s = 500 GeV
- p -p : s = 500 GeV (pp2pp)
- IP2 DY test : 3rd collision with proton beams

Preferred order for machine:

Au-Au, U-U, p -p (aware that PHENIX prefers to start with p -p)

Requests for Run-12

- Au-Au : s_{NN} = 200 GeV
- p -p : s = 500 GeV
- p-p (unpolarized) : s = 62.4, 39, 27, 22.4 GV

Run-11 upgrades for heavy ions

 Upgrade of longitudinal and vertical stochastic cooling systems (address feedthrough vacuum problems, mechanical problems, Blue-Yellow cross-talk of vertical planes)

Run Coordinator Greg Marr

- Construction of horizontal stochastic cooling systems expect stochastic cooling at $s_{NN} = 200 \text{ GeV}$ to perform as good as in Run-10, but may not be able to complete all planned shut-down work
- Correction of chromatic lattice abberations in design stage (needed to reduce β^* further, so far only beam based)
- Improved feedbacks (orbit, tune, coupling, chromaticity) on ramp (reduce ramp setup time)
- Improved store orbit feedback (improves stability of store conditions)
- Beam dump upgrade (needed for higher intensity)
- New Be beam pipe in PHENIX (smaller ID 40 mm vs. 76 mm now)

Run-11 Au-Au luminosity projections 100 GeV/nucleon

Electron Beam Ion Source (EBIS) (J. Alessi et al.)

Electron Beam Ion Source (EBIS) (J. Alessi et al.)

10 A electron beam creates desired charge state in trap within 5 T superconducting solenoid

lons	He - U	
Q / m	≥1/6	
Current	> 1.5 emA	
Pulse length	10 µs	
	(1-turn injection)	
Repetition rate	5 Hz	
Output energy	2 MeV/nucleon	
Time to switch species	1 second	
		1

- Simple, modern, low maintenance
- Lower operating cost
- Can produce any ions (noble gases, U, He³[†])
- Higher Au injection energy into Booster
- Fast switching between species, without constraints on beam rigidity
- Short transfer line to Booster (30 m)
- Few-turn injection (now about 50)
- No stripping needed before the Booster, resulting in more stable beams
- EBIS under commissioning
- Reached 50% of design Au intensity in trap, some beam transported through HEBT
- Expect U available for RHIC in Run-11, for 25-50% of Au-Au luminosity
- For short U-U run same (Bρ) as for of Au-Au at 100 GeV/nucleon allows for faster setup 96.6 GeV/nucleon for U
- Tandems still available for operation

RHIC polarized protons – luminosity and polarization

 $FOM = LP^n, n = 4 (long. P), 2 (trans. P), 1 (DY)$

RHIC protons – polarization and luminosity limits

1. AGS : proton bunches with high intensity, high polarization and low emittance

polarized source upgrade (under way) AGS horizontal tune jump system (tested in 2009-10)

- 2. RHIC: polarization transmission to 250 GeV acceleration near 2/3 resonance (tested in 2010)
- 3. RHIC: intensity transmission to 250 GeV beam dump system modifications (thicker beam pipe in dump) Yellow ramp transmission (9 MHz rf system)
- 4. RHIC: peak luminosity and luminosity lifetime reached lower β^* limit at 100 GeV (not necessarily a problem at 250 GeV) electron lenses allow for larger beam-beam parameter

Run-11 upgrades for p -p performance

- AGS horizontal tune jump system (up to 5% more polarization if successful)
- Possibly RHIC injection at lower energy (avoid last depolarizing intrinsic resonance in AGS)

Run Coordinator: Haxin Huang

- 9 MHz rf system (including 2 longitudinal dampers) (preservation of both longitudinal and transverse emittance, ramp transmission)
- RHIC MMPS flattop-to-ramp and ramp-to-flattop switchover (transients lead to beam loss and problems with 9 MHz system)
- Ramp feedbacks (orbit, tune, coupling, chromaticity)
- Global 1 Hz orbit feedback (tighter tolerances at IPs and collimators)
- 10 Hz orbit feedback at store (background reduction)
- CNI Polarimetry (new electronics, removes limits of rate dependence)
- $\ \ \beta^*$ reduction from 0.70 m to 0.65 m
- Beam dump modification (Q4 quenched with high intensity dumps)
- Spin flipper (re-commissioning after modifications)

Horizontal tune jump system in AGS (H. Huang et al.)

- 2 partial snakes prevent depolarization from low-order resonances
- Stable spin direction with partial snakes is off-vertical, horizontal depolarizing resonances appear (82, causing 5% polarization loss)
- Horizontal tune jump system installed in the AGS ($\Delta Q = 0.04$, 100ms)
- Critical for success: jump timing, emittance preservation
- Completed tests:
 - Demonstrated better polarization at $G\gamma=7.5$ (extraction at $G\gamma=45.5$)
 - Polarization maximization with timing scans
 - Demonstrated emittance preservation (Δε/ε few percent) with β-beat correction (Q near integer)

RHIC polarized protons – acceleration to 250 GeV near $Q_v = 2/3$

Had only 34% polarization at 250 GeV (57% at 100 GeV)

M. Bai et al.

Simulations (X. Gu, Y. Luo) compared Au with p lattice DA

RHIC polarized protons – 9 MHz system

Problem:

A. Zaltsman et al.

- Inject close to and above transition in 28 MHz system (h = 360)
- Longitudinally matched bunches are short emittance growth from e-cloud
- Unmatched bunches have 4x larger longitudinal emittance
 luminosity loss from hourglass effect and vertex size

Solution:

Use a 9 MHz system (h = 120) allows to accelerate long bunches that preserve both the longitudinal and transverse emittance

Cavity Concept: use the shield inside the common cavities to make a 9 MHz resonator

- common to both beams
- 9 MHz, 25 kV
- tested in 2009
- need independent long. dampers in both beam
- will use again in 2011

Run-11 p -p luminosity projections 250 GeV

Expect store polarization of 35-50%, and average store luminosity of up to 100 10³⁰ cm⁻²s⁻¹.

Drell-Yan experiment proposal 1 – colliding beams

- Colliding beams in IP2
- β* = 2m may be possible, needs upgrade of some
 IR correctors
 (PS for 6-poles, skew 6-poles, perhaps 8-, 10-, 12-poles correctors) – I

Can test impact of 3rd collision

- Beam-beam parameter
 ξ_{tot} (= beam-beam tune spread)
 is limited (to 0.015-0.020)
- Each collision contributes equally $\xi_{tot} = N \xi_{IP}$
- $\Box \xi_{IP} = N_b/\epsilon_n$ (independent of E, β^*)
- Add 3rd collision later in store when ξ_{IP} is reduced due to intensity loss and emittance increase

Drell-Yan experiment proposal 2 – internal target

V

Drell-Yan experiment proposal 2 – internal target

- 2 dipoles (11 and 3 mrad bend) with same polarity need compensation (RHIC orbit corrector has 0.3 mrad, at locations with larger β -functions) needs study
- $\beta^* = 2m$ may be possible, needs upgrade of some IR correctors (PS for 6-poles, skew 6-poles, perhaps 8-, 10-, 12-poles correctors) – needs study

Cluster or pellet H target with 10¹⁵ atoms/cm²

- Continuous operation
- Calculated beam lifetime τ 15 h (D. Trbojevic, internal note)
- Need to reduce target density by about factor 5
 - $(\tau 50 h without target)$

Internal H target with 10¹⁷ atoms/cm²,

- End-of-store operation, 15 min
- Beam lifetime τ = 0.15 h (scaled from above), (no problem for STAR/PHENIX except for extra time per store, of order τ)

Phase-2 with 168 bunches would require substantial upgrades (before eRHIC), may get more luminosity after source upgrade and higher bunch intensity Wolfram Fischer

26

Run-12 upgrades and performance

Heavy ions

- Finish stochastic cooling upgrades and construction Full 3D cooling (horizontal + vertical + longitudinal)
 L_{avg} = 40 10²⁶ cm⁻²s⁻¹ (2 Run-10, 20 design value)
- $\Box \beta^*$ reduction
- Feedbacks

Polarized protons

- Finish upgrades from Run-10 if any (long list)
- $\square \beta^*$ reduction, increase in bunch intensity
- Further upgrades need guidance from Run-11

Luminosity and polarization

- Au-Au at s_{NN} = 100 GeV: 0.6 1.3 nb⁻¹/week (full 3d stochastic cooling)
- p -p at s = 100 GeV: 8 10 pb⁻¹/week (Run-9 performance), P ≥ Run-9 value

• p -p at s = 250 GeV: **18** – **56** pb⁻¹/week, P ≥ Run-11 value Wolfram Fischer

56 MHz SRF for heavy ions – under construction (I. Ben-Zvi et al.)

28

NATIONAL LABORATORY

Calculations by M. Blaskiewicz

Optically Pumped Polarized H⁻ source at RHIC (A. Zelenski)

- 29.2 GHz ECR source used for primary proton beam generation
- source was originally developed for dc operation
- 10x intensity increase was demonstrated in a pulsed operation by using a very high-brightness Fast Atomic Beam Source instead of the ECR source

Electron lenses in RHIC – under construction Run-13

- partial compensation of head-on beam-beam
- goal of 2x luminosity increase together with source upgrade (allowing for higher bunch intensity with good polarization)
- critical: relative beam alignment (Tevatron experience) requires straight solenoid field lines, good instrumentation (bremsstrahlung monitor – C. Montag, D. Gassner et al.)

electron collector

Upgrades for heavy ions and polarized protons - in situ-coating

- Electron clouds limit
 - Ion intensity (through instability at transition)
 - Proton emittance at injection, and intensity
- Warm parts are largely coated with NEG
- Cold arcs are stainless steel, not coated Need in-situ coating for arcs

A. Hershkovich et al.

Summary

Au-Au performance in Run-10

- Au-Au at s_{NN} = 200 GeV: **0.65 nb⁻¹/week** (longitudinal + vertical stochastic cooling)
- Energy scan with s_{NN} = 62.4, 39, 7.7, 11.5 GeV
- No collider operation at $s_{NN} = 5 \text{ GeV}$
- Need guidance for importance of increased luminosity (factor 3-6) at low s_{NN}

Projections for Run-11

- Au-Au at s_{NN} = 200 GeV: **0.6 0.9 nb⁻¹/week**
- Au-Au energy scaling established with Run-10 data
- U beam available from EBIS (Tandems still available) (luminosity likely lower than Au-Au, prefer s_{NN} = 193 GeV for short run)
- p -p at s = 250 GeV: **18 32 pb⁻¹/week, 35-50% polarization**
- p -p test of 3rd colliding experiment in IP2 possible

Projections for Run-12

- Au-Au at s_{NN} = 100 GeV: **0.6 1.3 nb⁻¹/week** (full 3d stochastic cooling)
- p -p at s = 100 GeV: 8 10 pb⁻¹/week (Run-9 performance), P ≥ Run-9 value

32

• p -p at s = 250 GeV: 18 – 56 pb⁻¹/week, $P \ge \text{Run-11}$ value BROOKHA Wolfram Fischer