STAR Physics Program

STAR Beam Use Request for Runs 11, 12

Nu Xu for the STAR Collaboration

Nuclear Science Division Lawrence Berkeley National Laboratory

STAR Experiment

STAR Physics Focus

Polarized p+p program - Study proton intrinsic properties

Forward program

- Study low-x properties, search for CGC
- Study elastic (inelastic) processes (pp2pp)
- Investigate gluonic exchanges

1) At 200 GeV top energy

- Study medium properties, EoS
- pQCD in hot and dense medium

2) RHIC beam energy scan

- Search for the **QCD** critical point
- Chiral symmetry restoration

STAR BUR for Runs 11 and 12

Run	Beam Energy	Time	System	Goal
11	√s _№ = 18, 27 GeV*	2 weeks	Au + Au	100, 150M minbias
	√s _№ = 200 GeV	4 weeks	U + U	200M minbias 200M central
	√s = 500 GeV	5 weeks 6 weeks	$p_{\uparrow} p_{\uparrow} p_{\downarrow} p_{\rightarrow} p_{\rightarrow}$	trans. $P^{2*}L=4 \text{ pb}^{-1}$ long. $P^{2*}L=20 \text{ pb}^{-1}$
		1 week	$p_{\uparrow}p_{\uparrow}$	pp2pp at high β*
12	√s = 500 GeV	10 weeks	p _→ p _→	long. P ² *L= 50 pb ⁻¹ P ⁴ *L= 15 pb ⁻¹
	or		or	
	√s = 200 GeV**		$p_{\uparrow} p_{\uparrow}$ $p_{\rightarrow} p_{\rightarrow}$	trans. P ² *L= 8.5 pb ⁻¹ long. P ⁴ *L= 4.3 pb ⁻¹
	√s _№ = 200 GeV	10 weeks	U + U or Au+Au***	3.5 nb⁻¹ U+U or 5 nb⁻¹ Au+Au

* Request a CA-D test to determine the lowest possible collision energy at RHIC

** Request complete the Run 9 spin physics goals at \sqrt{s} = 200 GeV

*** Depends on the out come of Run 11 U+U commissioning

Selected STAR Spin Results

STAR W Program:

- Mid-rapidity W program (-1<η<1): BEMC and TPC
- Forward/Backward W program (1<η<2):
 EEMC and TPC / FGT (Installation in 2011, ready for Run 12)

The First W Asymmetry Measurement

The First W Asymmetry Result

Parity-violating single-spin asymmetry A_L for W^+/W^-

$$A_L^{W^-} = rac{1}{2} \left(rac{\Delta ar{u}}{ar{u}} - rac{\Delta d}{d}
ight) \qquad A_L^{W^+} = rac{1}{2} \left(rac{\Delta ar{d}}{ar{d}} - rac{\Delta u}{u}
ight)$$

STAR Preli	minary Run 9 (p+p √	s=500 GeV)
$A_L(W^+) = +$	$-0.33 \pm 0.10 (\text{stat.})$	$\pm 0.04 (\text{syst.})$
$A_L(W^-) =$	$0.18\pm0.19({\rm stat.})$	$^{+0.04}_{-0.03}(m syst.)$

- 1) TPC charge separation works up to $p_T \sim 50 \text{GeV}$
- Measured asymmetries are in agreement with theory evaluations using polarized pdf's (DSSV) constrained by polarized DIS data.

Run 11: Spin Request for W

Parity-violating single-spin asymmetry A_L for W⁺/W⁻

$$A_L^{W^-} = rac{1}{2} \left(rac{\Delta ar{u}}{ar{u}} - rac{\Delta d}{d}
ight) \qquad A_L^{W^+} = rac{1}{2} \left(rac{\Delta d}{ar{d}} - rac{\Delta u}{u}
ight)$$

STAR

STAR pp2pp Results

1) Central production: glueballs in Double Pomeron Exchange

2) Elastic scattering: hadronic spin-flip amplitude

$$A_N(t) = \frac{\sigma^{\uparrow}(t) - \sigma^{\downarrow}(t)}{\sigma^{\uparrow}(t) + \sigma^{\downarrow}(t)} = C_1 \phi_{flip}^{em*} \phi_{non-flip}^{had} + C_2 \phi_{flip}^{had*} \phi_{non-flip}^{em}$$

The 200 GeV data limited sensitivity for spin flip. In 500 GeV collisions, the -t range will be expanded to 0.15 (GeV/c)², more sensitive to different model predictions.

- 1) STAR preliminary results show that in 200 GeV p+p collisions, η -meson single spin asymmetry $A_N \sim 0.6$ at $x_F \sim 0.65$.
- STAR will make a similar measurement for 500 GeV p+p collisions, with much greater precision.
- 3) **Run 11 request:** 20 pb⁻¹ and polarization ~ 60%

Selected STAR Heavy Ion Results

Net-proton High Moments

Estimated errors in Au+Au collision :

Run 10: 7.7, 11.5, 39 GeV
 Run 11: 18, 27 GeV

1) STAR results* on net-proton high moments for Au+Au collisions at $\sqrt{s_{NN}}$ = 200, 62.4 and 19.6 GeV.

2) Sensitive to critical point**:

$$\left\langle \left(\delta N\right)^2 \right\rangle \approx \xi^2, \ \left\langle \left(\delta N\right)^3 \right\rangle \approx \xi^{4.5}, \ \left\langle \left(\delta N\right)^4 \right\rangle \approx \xi^7$$

3) Direct comparison with Lattice results^{**}:

$$S^* \sigma \approx \frac{\chi_B^3}{\chi_B^2}, \qquad \kappa^* \sigma^2 \approx \frac{\chi_B^4}{\chi_B^2}$$

4) Extract susceptibilities and freezeout temperature. An independent test on thermal equilibrium in HI collisions.

* STAR: 1004.4959, accepted by PRL.
** M. Stephanov: PRL,102, 032301(09).
*** R.V. Gavai and S. Gupta: 1001.2796.

Identified Particle Fluctuations

K/π fluctuations

- 1) STAR: Full PID, large acceptance uniform over $\sqrt{s_{NN}}$
- 2) Accurate and differential measurements: error estimates from Run 10 data

Search for Local Parity Violation

in High Energy Nuclear Collisions

The separation between the same-charge and opposite-charge correlations.

Strong external EM field
 De-confinement and Chiral symmetry restoration

 $\left\langle \cos\left(\phi_{\alpha}+\phi_{\beta}-2\Psi_{RP}\right)\right\rangle$

Parity even observable Voloshin, PR <u>C62</u>, 044901(00).

STAR; PRL103, 251601(09); 0909.1717 (PRC).

Run 11 requests: Beam Energy Dependence & U+U

STAR

Run 11 Request U+U Collisions

- 1) Significant increase in energy density for hydrodynamic studies
- 2) Prolate shape: path-length dependence of E_{loss} at much higher density
- First run from EBIS likely to be moderate intensity.
 Run 11 request: 200M MB and 200M central UU collisions.

STAR Heavy flavor decay electron ($p_T > 2.5$ GeV/c) differential cross section analysis:

- 1) An error in the efficiency correction in 2003 data analysis identified.
- 2) New results from 2005 (SVT), 2006 (SVT) and 2008 (no SVT) are consistent.

Run 8 data, scaled to Run 9 and 10 statistics
 NPE measurement up to ~10 GeV/c.

- Jets are seen in Au+Au collisions, extended the kinematical reach to jet energies > 40 GeV in central Au+Au collisions at RHIC
- 2) We see a substantial fraction of jets in contrast to x5 suppression for light hadron R_{AA}
- 3) Run 10 statistics: a factor of 40 increase

- 1) Run 9: 200 GeV p+p collisions, 75% TOF installed.
- 2) STAR will do the di-electron analysis for Au+Au collisions data from Run 10 with 100% TOF.
- 3) Run 11 request: 150M events from 27 GeV Au+Au collisions.

Results from Run 10

STAR Run 10: 200, 62.4, 39, 11.5 7.7 GeV

A great success, many thanks to CA-D!

Run 10 Performance

Beam Energy	Timing Resolution	Remarks
200 (GeV)	85 (<i>ps</i>)	At 39 GeV, using a new calibration
62.4 (GeV)	90 (<i>ps</i>)	scheme without information of start time from VPD, 87 <i>ps</i> of timing resolution
39 (GeV)	85 (<i>ps</i>)	has been achieved.

Collision Centralities

1) Collision geometries at different energies are under control

2) Run 11 request: 18 and 27 GeV Au+Au collisions

Particle Identification at STAR

BNL PAC, June 21 - 22, 2010

STAR Upgrades

STAR Upgrade Timeline*

Upgrade	Completion	Key Physics Measurements
FMS	Completed 2008	(a) Trans. Asymmetry at forward-y(b) CGC
TPC DAQ1000	Completed 2009	Minimal dead time, large data set
MRPC TOF	Completed 2010	Fast PID in full azimuthal acceptance
FGT	Summer 2011 Ready for Run 12	Forward-y W [±] for flavor separated quark polarization
HFT**	Summer 2013 Ready for Run 14	(a) Precision hadronic ID for charm and Bottom hadrons(b) Charm and Bottom hadron energy loss and flow
МТД	Summer 2013 Ready for Run 14	 (a) High p_T muon trigger (b) Quarkonia states
pp2pp'	Summer 2014 Ready for Run 15	

Forward GEM Tracker

- 1) FGT: RHIC MIE project
- 2) Six light-weight triple-GEM disks
- 3) New mechanical support structure
- 4) Planned installation: Summer 2011
- 1) Full charge-sign discrimination at high p_T
- Design polarization performance of 70%
 or better to collect at least 300pb⁻¹
- 3) Ready for Run 12!

Heavy Flavor Tracker at STAR

STAR: Muon Telescope Detector

Muon Telescope Detector (MTD) at STAR:

- 1) MRPC technology; $\mu_{\epsilon} \sim 36\%$; cover ~45% azimuthally and |y| < 0.5
- 2) TPC+TOF+MTD: muon/hadron enhancement factor ~ 10^{2-3}
- 3) For high p_T muon trigger, heavy quarkonia, light vector mesons, $B \rightarrow J/\Psi + X$
- 4) China-India-STAR collaboration: a proposal sub. to BNL 02/2010.

STAR

Summary

1) Spin Physics

- $W^{\pm} A_{L}$ at mid-y (2011) and forward-y (2012)
- Light meson A_N at forward-y (2011)
- DPE and hadronic spin-flip amplitude
- Δg measurements at 500 GeV (2012) and 200 GeV (2013)

2) Heavy Ion Physics*

- Complete BES at 18 and 27 GeV including di-electron program at STAR (2011)
- U+U collisions: hydro limit, LPV, path length dep. (2011)
- High luminosity AA collisions (2012)

* Request a CA-D test to determine the lowest possible collision energy at RHIC

STAR BUR for Runs 11 and 12

Run	Beam Energy	Time	System	Goal
11	√s _№ = 18, 27 GeV*	2 weeks	Au + Au	100, 150M minbias
	√s _№ = 200 GeV	4 weeks	U + U	200M minbias 200M central
	√s = 500 GeV	5 weeks 6 weeks	$p_{\uparrow} p_{\uparrow} p_{\downarrow} p_{\rightarrow} p_{\rightarrow}$	trans. $P^{2*}L=4 \text{ pb}^{-1}$ long. $P^{2*}L=20 \text{ pb}^{-1}$
		1 week	$p_{\uparrow}p_{\uparrow}$	pp2pp at high β*
12	√s = 500 GeV	10 weeks	p _→ p _→	long. P ² *L= 50 pb ⁻¹ P ⁴ *L= 15 pb ⁻¹
	or		or	
	√s = 200 GeV**		$p_{\uparrow} p_{\uparrow}$ $p_{\rightarrow} p_{\rightarrow}$	trans. P ² *L= 8.5 pb ⁻¹ long. P ⁴ *L= 4.3 pb ⁻¹
	√s _№ = 200 GeV	10 weeks	U + U or Au+Au***	3.5 nb⁻¹ U+U or 5 nb⁻¹ Au+Au

* Request a CA-D test to determine the lowest possible collision energy at RHIC

** Request complete the Run 9 spin physics goals at \sqrt{s} = 200 GeV

*** Depends on the out come of Run 11 U+U commissioning