RHIC machine performance and projections

et Target

Wolfram Fischer

PHENI

IP8

LINAC

Han Stranger

Booster

AGS

IP10

6 June 2011 BNL NPP PAC Meeting

IP2

Relativistic Heavy Ion Collider 1 of 2 ion colliders (other is LHC), only polarized p-p collider

IP8

IP1(

2 superconducting 3.8 km rings2 large experiments

100 GeV/nucleon Au 250 GeV polarized protons

Performance defined by

- 1. Luminosity L
- 2. Proton polarization P
- 3. Versatility

Au-Au, d-Au, Cu-Cu, polarized p-p (so far) 12 different energies (so far)

Contents

1. Run-11 performance

p⁻-p⁻ at \sqrt{s} = 500 GeV, impact of A_nDY Au-Au at \sqrt{s}_{NN} = 19.6 GeV and 200 GeV

- 2. Main upgrades for Run-12 and Run-13 Au-Au / U-U: EBIS, stochastic cooling p^-p^: polarized source, electron lenses
- 3. Further upgrades

56 MHz SRF, lower energy cooling, energy increase, in-situ beam pipe coating, ³He[^]

4. Projections for Run-12 to Run-14

Improvements for polarized protons in Run-11

AGS

- Magnets surveyed and adjusted horizontally (*P*+)
- Horizontal tune jump quads operational (reduced *P* profiles, *P*+5%)
- Access Control System rebuild after fire on 11/09/11

RHIC

- Magnets surveyed and adjusted vertically (P+)
- New auto-transformer in Blue to reduce flattop-to-ramp MMPS transients (needed for 9 MHz rf, had done Yellow previously) (P+)
- Yellow snake installed in sector 9 after repair
- Inserts installed in beam dump (19 pieces, 12.7 cm long), allowed for higher intensity, at limit in Run-9 (Q4 quench without) (L+)
- 2 common storage cavities moved to sector 3,
 2 more cavities installed => allows for permanent 9 MHz cavity (L+)

Main improvements for polarized protons in Run-11

RHIC

- 2 storage cavities permanently converted to 9 MHz,
 1 bouncer cavity install in each ring (9 MHz) (P+, L+)
- Current limit for tq increased from 100 A to 140A IR6 to IR8 (L+)
- Collimation on ramp with continuous set point changes (L+)
- RHIC CNI polarimeters with new electronics (mitigates rate dependence)
- First H-jet polarization measurement at injection

RHIC beam and optics control

- All ramps with orbit, tune, and coupling feedback (P+, L+)
- Ramps $Q_v = 0.673$ (near low order resonance) (*P*+)
- Radial loop control via all BPMs (previously only 2) (P+, L+)
- Octupoles on ramp to suppress instabilities (L+)
- Operational use of 10 Hz orbit feedback in store (L+)
- First use of beta-beat correction in operation (L+)

Beam control improvement – feedbacks on ramp

Run-11 250 GeV store overview – polarization and luminosity

Run Coordinator: Haixin Huang

Run-11 polarized proton luminosity \sqrt{s} = 500 GeV

Run Coordinator: Haixin Huang

8

NATIONAL LABORATORY

Wolfram Fischer

RHIC time-in-store history (% of calendar time)

Time-in-store lower than in previous runs

- No common reason identified for reduced time-in-store
- Increase in MTTR (Mean Time To Repair), PS overall about the same as Run-9
- 2 largest events (refrigerator off, AGS power cable) account for 9%
- Effect on performance stronger than linear (scheduling difficult, less time for implementation of improvements, more time re-establishing machine)

9

Wolfram Fischer

Unusual events in 250 GeV polarized proton Run-11

- Total of 6 snow days during start-up (>20 h excused time in January), delayed physics by about ¹/₂ week
- Fast emittance growth in Blue ring (intermittently observed in 2007 and 2009, tracked down to loose wire in dump kicker thyratron module B), delayed physics by about ¹/₂ week
- Breaker trip on 03/07/11 leads to refrigerator shut-off and helium venting in 2:00 and 6:00 service buildings, loss of about 3.5 tons of He, after repair encounter difficulties in purchasing replacement He, operation re-established on 03/17/11 – 219h downtime
- Power cable failure shut-down most of AGS equipment and part of building 911 – 78h downtime
- New 9 MHz RF system breaks 1 week before run end (current shield for bellows failing leading to overheating), luminosity cut in half

Polarization in Run-11 (analysis still ongoing)

Store polarization as measured by H-jet (measures <P>): 46% in Run-10 vs. 35% in Run-9

(polarization has a profile, max. polarization in center is up to 65%)

- AGS horizontal tune jump system operational tested in Run-9, P +5% with high intensity
- Acceleration near Q_v = 2/3 in RHIC measured P transmission as function of Q_v in Run-9, tested ramp with Au in Run-10, simulated differences between Au and p ramp last summer
- Vertical orbit control on ramp 20 μm measured orbit rms late in ramp – real rms depends on BPM offsets
- First H-jet measurement at injection

Possible incremental improvements for next run

- Changes in source/LEBT/MEBT
- Smaller emittance growth (less *P* profile in AGS and RHIC)
- Small change in store energy in RHIC (*P* lifetime reduction)

Up/down ramp with polarized protons in Run-11

Another measurement of the store polarization

Setup and <u>3 up and down ramps with up to 109x109 bunches</u> in only 2 shifts (simultaneous orbit/tune/coupling/chromaticity feedback essential)

Up/down ramp with polarized protons in Run-11

Compare CNI measurement at 100 GeV before and after up/down ramp

- Polarization ratio 100 GeV before / 100 GeV after: 0.79±0.02%
- If up and down ramps are identical, loss from 100 to 250 GeV is **11%**
- With 63% polarization at 100 GeV (Run-9 H-jet) expect **56%** at 250 GeV
- H-jet measurement in Run-11 was 46%

Wolfram Fischer

A_nDY in Run-11 (250 GeV pp)

- Beam envelope function $\beta^* = 3.0$ m at IP2
- Reduced IP2 crossing angle from initially 2.0 mrad to zero
- Added 3rd collision with following criteria (last instruction):
 - 1. $N_{\rm b} \le 1.5 \times 10^{11}$
 - 2. Beam loss rate <15%/h in both beams
 - 3. Not before first polarization measurement 3h into store

Future operation of A_nDY

• Can reduce β^* at IP2

have run with $\beta^* = 2.0$ m previously for BRAHMS

- β^* = 1.5 m probably ok, needs to be tested
- Longer stores

10h instead of 8h in Run-11 (depends on luminosity lifetime and store-to-store time)

- Collide earlier in store when conditions are met
 needs coordination with polarization measurement, PHENIX and STAR
- Electron lenses (see later) if A_nDY runs beyond Run-13 increases max beam-beam tune spread, currently ΔQ_{max,bb} ≈ 0.015 can be used for to increase ξ~N_b/ε and/or number of collisions
- Run-11 luminosity at A_nDY: max ~0.5 pb⁻¹/store

With improvements:

- ~3x increase,
- ~10 pb⁻¹/week

(A_n DY sees stronger impact of prematurely aborted stores than STAR and PHENIX)

Run-11 peak polarization and luminosity

Run Coordinator: Haixin Huang

		Run-9 achieved	Run-11 achieved	Run-11 projections
Polarization P	%	35*	46 *	35-50*
Peak luminosity L _{peak}	$10^{30}{\rm cm}^{-2}{\rm s}^{-1}$	85	145*	85-170
Avg. store luminosty L_{avg}	$10^{30}{\rm cm}^{-2}{\rm s}^{-1}$	55	90 *	55-100
Luminosity per week L _{week}	pb ⁻¹	18	25	18-35
Time-in-store	%	53	37 (46**)	55

* Online H-jet measurement (average over transverse profile)

* Average of 6 best stores.

** Excluding down time due to refrigerator and AGS power cable failure.

- Good progress with peak performance
- Overall performance held back by reduced reliability
- Established operation of A_nDY with small impact on STAR/PHENIX

Improvements for heavy ions in Run-11

- Upgrade of longitudinal and vertical stochastic cooling systems addressed feedthrough vacuum problems, mechanical problems, Blue-Yellow cross-talk of vertical planes
- Separate common storage rf cavities (197 MHz) less beam loading during rebucketing – main intensity limit in Run-10
- Improved feedbacks (orbit, tune, coupling, chromaticity) on ramp reduced ramp setup time, ramp reproducibility
- 10 Hz orbit feedback at store reduced background
- Improved store orbit feedback improves stability of store conditions
- Better collimation on ramp fewer aborted ramps with beam losses
- Beam dump upgrade

needed for higher intensity

• New Be beam pipe in PHENIX (smaller ID – 40 mm vs. 74 mm now)

Run-11 Au-Au $\sqrt{s_{NN}} = 19.6 \text{ GeV}$ (nominal injection energy)

Run-11 Au-Au $\sqrt{s_{NN}} = 19.6 \text{ GeV}$ (nominal injection energy)

Run Coordinator: Greg Marr

19

NATIONAL LABORATORY

Wolfram Fischer

Run-11 Au-Au $\sqrt{s_{NN}}$ = 200 GeV (still under way)

Wolfram Fischer

(also longitudinal cooling in both Blue and Yellow)

Run-11 Au-Au $\sqrt{s_{NN}} = 200 \text{ GeV}$ (still under way)

Run Coordinator: Greg Marr

Presently on track to meet projections ...

Wolfram Fischer

Run-11 Au-Au $\sqrt{s_{NN}}$ = 200 GeV (still under way)

Time in store recovered to historical value

- Number of hardware problems resolved during pp operation
- Profit from commissioning of feedbacks and ramp collimation during pp
- Fewer new systems

Run-11 Au-Au luminosity (still under way)

Run Coordinator: Greg Marr

		Run-10 achieved	Run-11 achieved (to date)	Run-11 projections
Peak luminosity L _{peak}	$10^{26}\mathrm{cm}^{-2}\mathrm{s}^{-1}$	40	45	40-45
Avg. store luminosty L_{avg}	$10^{26}\mathrm{cm}^{-2}\mathrm{s}^{-1}$	20	30	20-25
Luminosity per week L _{week}	μb ⁻¹	650	800	650-900
Time-in-store	%	53	58	55

- Setup faster than anticipated
- Good progress with peak and average performance
- About half the beam loss is now due to burn-off
- Integrated luminosity presently on track

RHIC heavy ion and polarized protons 2000-2011

2011 Au-Au run still under way

Main upgrades for Run-12

Heavy ions

- EBIS operation for RHIC (Au, U) needs to replace Tandem performance
- 1st use of horizontal stochastic cooling in both beams then 3D cooling in both planes
- Incremental changes to lattice (β^{*}, Q" reduction)
 β^{*} squeeze in store after emittance reduced through cooling

Polarized protons

- Incremental changes to improve polarization source, emittance growth – particularly in AGS, store energy, …
 - Upgrade of 9 MHz RF system high-intensity acceleration, smaller vertex and hourglass effect
- Incremental changes to store lattice $\Delta\beta/\beta$ reduction

Upgrades for Run-13

Heavy ions

- Incremental changes to stochastic cooling
- Incremental changes to lattice (β^{*}, Q")

Polarized protons

- Upgraded polarized proton source order of magnitude more intensity, P +5%
- Electron lenses

partial compensation of head-on beam-beam effect will need commissioning time

- Incremental changes to store lattice
 - $\boldsymbol{\beta}^{*}$ reduction, optimization for e-lens operation

Upgrades for Run-14 and beyond

Heavy ions

• 56 MHz SRF (Run-14)

increased longitudinal focusing, 30-50% more luminosity

• Low energy cooling (earliest for Run-17)

moved out by at least 2 years need to finish e-lenses and 56 MHz SRF before resources are available

Polarized beams

- 56 MHz SRF (Run-14)
- Energy increase (+10% to 275 GeV) yields +45% in W production cross section
- In-situ beam-pipe coating reduction of Secondary Electron Yield in arcs, R&D under way
- Polarized ³He

R&D on source started (EBIS as ionizer), need polarimetry

Electron Beam Ion Source (J. Alessi et al.)

- 10 A electron beam creates desired charge state in trap within 5 T superconducting solenoid
- Accelerated through RFQ and linac
- Injected into AGS Booster

EBIS under commissioning:

- So far created He⁺, He²⁺, Ne⁵⁺, Ne⁸⁺, Ar¹¹⁺, Ti¹⁸⁺, Fe²⁰⁺, Au³²⁺
- Delivered beam to NSRL
- Work on ~4x increase in Au³²⁺ intensity in AGS Booster (2x from electron current, 2x from transmission)
- Received U cathode
- Tandem still available as backup next year

RHIC – 3D stochastic cooling for heavy ions

M. Brennan, M. Blaskiewicz, F. Severino, Phys. Rev. Lett. 100 174803 (2008); PRST-AB, PAC, EPAC 29

Optically Pumped Polarized H⁻ source (OPPIS)

29.2 GHz ECR source used for primary H⁺ generation
source was originally developed for dc operation

RHIC OPPIS produces reliably 0.5-1.0 mA polarized H⁻ ion current.

Polarization at 200 MeV: P = 80-85%.

Beam intensity (ion/pulse) routine operation:

Source	- 10 ¹² H ⁻ /pulse
Linac	- 5x10 ¹¹
AGS	- 1.8-2.0x10 ¹¹
RHIC	- 1.8x10 ¹¹ /bunch

Optically Pumped Polarized H⁻ source (OPPIS) – A. Zelenski

Upgraded OPPIS (Run-13)

10x intensity increase was demonstrated in a pulsed operation by using a very high-brightness Fast Atomic Beam Source instead of the ECR source

Goals:

 H⁻ beam current increase to 10mA (order of magnitude)
 Polarization to 85-90% (~5% increase)

Upgrade components:

- 1. Atomic hydrogen injector (collaboration with BINP Novosibirsk)
- 2. Superconducting solenoid (3 T)
- 3. Beam diagnostics and polarimetry

Electron lenses – partial head-on beam-beam compensation

Polarized proton luminosity limited by head-on beam-beam effect $(\Delta Q_{bb,max} \sim 0.02)$

Basic idea:

In addition to 2(3) beam-beam collisions with **positively** charged beam have another collision with a **negatively** charged beam with the same amplitude dependence.

Exact compensation for:

- short bunches
- $\Delta \psi_{x,y} = k\pi$ between p-p and p-e collision
- no nonlinearities between p-p and p-e
- same amplitude dependent kick from p-p, p-e
- only approximate realization possible

Expect up to 2x more luminosity with OPPIS upgrade Commissioning planned for Run-13

56 MHz SRF for heavy ions – under construction (I. Ben-Zvi et al.)

33

NATIONAL LABORATORY

Calculations by M. Blaskiewicz

Summary – RHIC luminosity and polarization goals

Parameter	Unit	Achieved	Upgraded	
Au-Au operation		(2011)	(>=2012)	
Energy	GeV/nucleon	100	100	
No of bunches		111	111	
Bunch intensity	10 ⁹	1.3	1.0	
Average L	10 ²⁶ cm ⁻² s ⁻¹	25	40	
p↑- p↑ operation		(2011)	(>=2012)	(>=2014)
Energy	GeV	100 / 250	100 / 250	250
No of bunches		109	109	109
Bunch intensity	10^{11}	1.3 / 1.65	1.3 / 1.7	2.0
Average L	10 ³⁰ cm ⁻² s ⁻¹	24 / 90	30 / 150	60 / 300
Polarization P	%	55 / 46	60	70

Run-12 and Run-13 working assumptions

(from Beam Use Proposals)

Requests for Run-12

•	Au-Au	: √s _{NN} = 27 GeV	(STAR,	PHENIX)	
•	Au-Au	: √s _{NN} = 200 GeV	(PHENIX)	
•	U-U	: √s _{NN} = 193 GeV	(STAR,	PHENIX)	
•	p^-p^	: √s = 500 GeV	(STAR,	PHENIX)	
•	p^-p^	: √s = 200 GeV	(PHENIX)	
•	p-p (unpolarized)	: √s = 62.4, 39 GeV	(PHENIX)	
F	Requests for Run-13				
•	Au-Au	: √s _{NN} = 200 GeV	(STAR)	
•	Cu-Au	: √s _{NN} = 200 GeV	(PHENIX)	
•	U-U	: √s _{NN} = 193 GeV	(PHENIX)	
•	p^-p^	: √s = 500 GeV	(STAR,	PHENIX)	
•	p^-p^	: √s = 200 GeV	(STAR,	PHENIX)	

Preferred order for machine is: heavy ions first, polarized protons second.

Wolfram Fischer

Projections projection for Au-Au

[Note1 :assume 12 weeks of physics, 8 weeks of ramp-up, start at ¼ of max] [Note 2: last projections from 11 May 2010 still valid – reached peak performance goals for both polarized protons and heavy ions, will update after Run-11]

Wolfram Fischer

Projections for p^-p^

[Note1:assume 12 weeks of physics, 8 weeks of ramp-up, start at ¼ of max] Note 2: last projections from 11 May 2010 still valid – reached peak performance goals for both polarized protons and heavy ions, will update after Run-11 Note 3: A_nDY operation with ~10 pb⁻¹/week after ramp-up Wolfram Fischer

37

Summary

Performance in Run-11

- p[^]-p[^] at √s = 500 GeV:
 - $P \sim 45-50\%$, $L_{avg} = 90 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}$, **25 pb**⁻¹/week

(all new records for peak performance, and all within Run-11 projections) integrated luminosity lower than expected due to down time A_nDY tested, ran with relatively small impact on STAR/PHENIX

- Au-Au at $\sqrt{s_{NN}} = 19.6 \text{ GeV}$: 17.5 $\mu b^{-1}/10 \text{ days}$ (175x Run-2 value for STAR)
- Au-Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$: ~800 $\mu b^{-1}/\text{week}$ (still running)

Run-12

- Au-Au: EBIS, horizontal stochastic cooling (L +30%, U)
- p⁻-p⁻: incremental changes (L +30%, P +5%) A_nDY possible with ~10 pb⁻¹/week after full ramp-up

Run-13

- Au-Au: incremental changes
- p[^]-p[^]: source upgrade, electron lens commissioning

