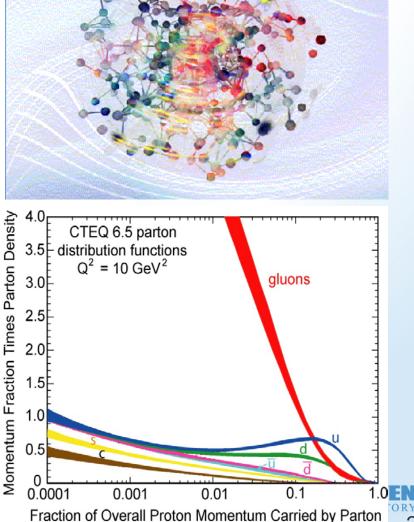
How PHENIX and STAR Decadal Plans Fit Into Overall RHIC Future Strategy

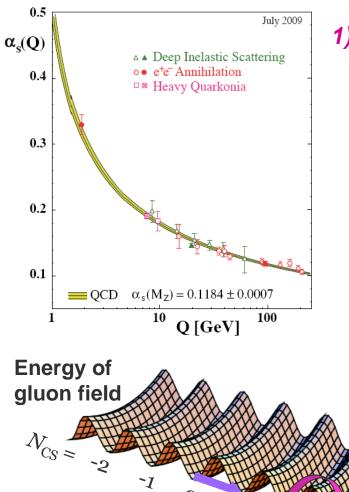
Steve Vigdor RHIC 2011 PAC Meeting BNL, June 7, 2011

- I. Broad science themes to frame the issues
- II. Plans for the next ~5 years
- III. Decadal plans
- IV. Long-term future and eRHIC
- V. Upcoming users workshop on future RHIC strategy

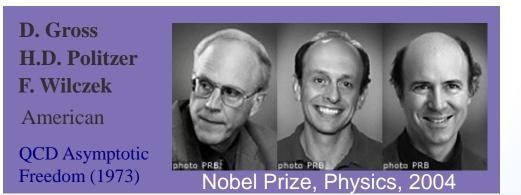
a passion for discovery



RHIC and eRHIC Science: Condensed Matter Physics with a Force of a Different Color



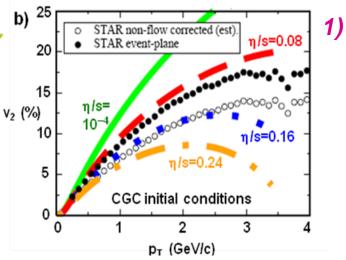
What are the unique quantum many-body manifestations of a *non-Abelian* gauge theory and self-interacting force carriers? Are there lessons for other fundamental (e.g., electroweak) theories, that are harder to subject to laboratory investigation? How do we pump/probe fleeting ultrahot quark-gluon matter that lives only 10^{-23} s? How do we take freezeframe snapshots of gluons that move in cold matter on time scales ~ 10^{-23} s?


2

3 Examples of Basic Questions for QCD Matter at RHIC

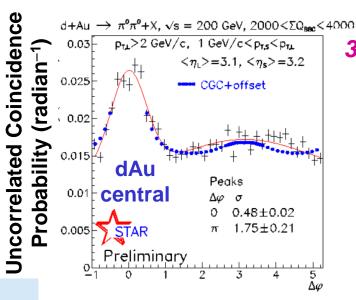
instantor

1) Does asymptotic freedom ⇒ high-density (of color charge) ideal Quark-Gluon Plasma gas?

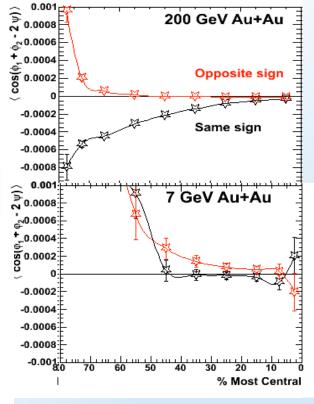


2) Does rich topological structure of QCD vacuum ⇒ local symmetry violation from high-temperature "sphalerons" near QGP transition, analogous to ones speculated to contribute to matter-antimatter asymmetry in early universe?

3) Do gluon self-interactions ⇒ "universal" saturated gluonic matter at the heart of all hadrons/nuclei ? Significant gluon contributions to proton spin?


sphaleror

RHIC Answers to Date for Basic QCD Matter Questions


From earliest elliptic flow results, QGP @ RHIC \cong perfect relativistic quantum fluid \neq ideal gas. Similar results from LHC. n_q scaling \Rightarrow subhadronic degrees of freedom. Viscous hydro + v_n results + other systems to alter initial geometry \Rightarrow path to quantify η /s vs. quantum limit.

2) Correlations among particles consistent with eventby-event charge separation allowed by Local P- & CP-violation. Signal ~vanishes at lower √s. Looking for further evidence...

3) Various RHIC observations, especially in d+Au, hint at effects of gluon saturation. No evidence yet for significant ∆g. Electron-Ion Collider (EIC) needed to settle

both questions.

Three Stages of RHIC's Future

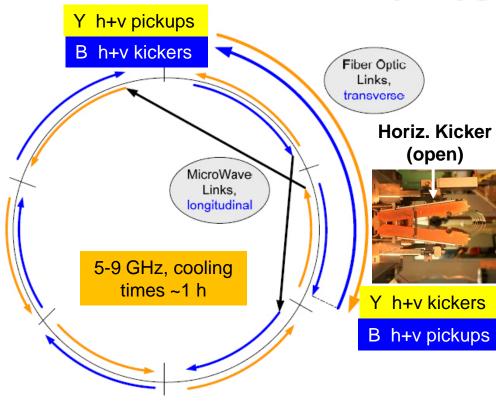
Short-term (2011-2016): ongoing upgrades to RHIC \mathcal{L} , PHENIX & STAR fuel well-defined program addressing key open questions:

- How perfect is the near-perfect liquid?
- Is the nature of QCD vacuum transformed at RHIC T? (e.g., are LPV "bubbles" real effect? Chiral symmetry restored?)
- Is there a critical endpoint in QCD phase diagram?
- How is force between q and q modified in QGP?
- How do partons lose energy in traversing QGP?
- Does the QGP respond collectively to the lost energy?
- How do nucleons get their spin from q, g constituents?
- • •

Brook

Issue: Define complementarity to LHC HI clearly & compellingly!

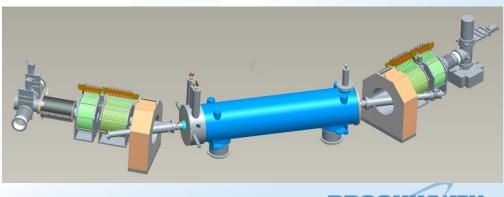
Medium-term (2017-2022): PHENIX, STAR Decadal Plans aimed at pursuing compelling long-term questions in A+A, d(p)+A, and $\overrightarrow{p+p}$ that require further detector upgrades Issues: Why are RHIC HI collisions still needed? Can national NP budget support operations at CEBAF, RHIC and FRIB, plus construction of EIC? What is optimal strategy for RHIC going into next NP Long Range Plan?


Three Stages of RHIC's Future

Long-term (> 2022): eRHIC - add ~5 GeV (upgradable to 30 GeV) electron Energy Recovery Linac inside RHIC tunnel to facilitate $e+A, \vec{e}+\vec{p}$ ($^{3}\vec{He}$) experiments aimed at studying gluon-dominated cold matter. Fall 2010 INT Workshop progressed in defining golden experiments, core science program.

Issues: Can we match compelling science program to realizable project cost? How do we transition from RHIC to eRHIC – can we accommodate continuing A+A and p+p programs in parallel with e+A and e+p? Will we have to sacrifice some years of RHIC operations to support eRHIC construction?

RHIC Luminosity Upgrades Under Way

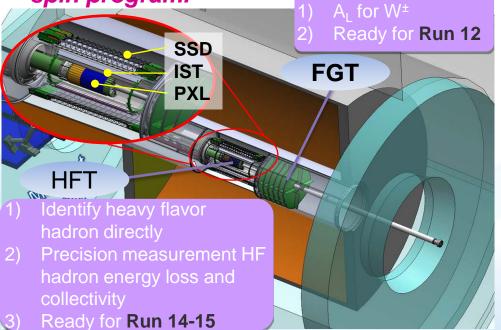


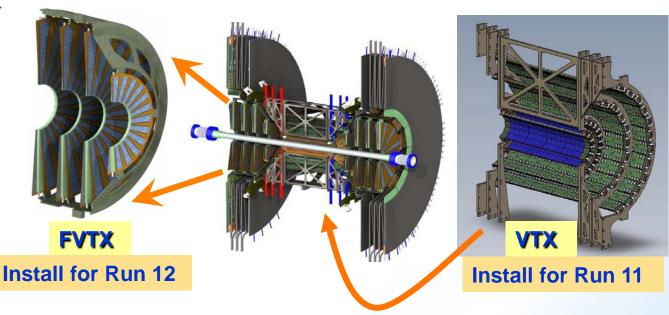
RHIC breakthrough in bunchedbeam stochastic cooling overcomes intrabeam scattering limits, facilitates ~x10 improvement in heavy-ion collision rates, 4 years earlier and at ~1/7 the cost envisioned in 2007 NP Long Range Plan.

Much of the new system commissioned during 2010, rest anticipated for 2012-2014 runs (aided by ARRA funds).

Electron lenses (with ARRA + AIP support) to be installed for 2013 run will use few keV e+p collisions to compensate partially for p+p beambeam betatron tune shift/spread

Hope to improve polarized p+p luminosities by factor ~2 Brookhaven Science Associates





RHIC Detector Upgrades Under Way

> PHENIX VTX & FVTX upgrades (ONP funds) greatly improve vertex resolution, heavy flavor ID

μ trigger upgrade
 (NSF + Japanese
 funds) installed in
 FY10-11 enhances W
 prod'n triggering for
 spin program.

> STAR Heavy Flavor Tracker receives CD-1 in FY10; CD-2/3 review in July 2011. Will permit topological reconstruction of charmed hadrons.

STAR Forward GEM Tracker (RHIC capital equipment project) to be installed for Run 12, will enhance forward tracking, W charge sign discrimination.

Plans and Upgrades for Coming ~5 Years Address All New RHIC-Related NP Performance Milestones...

	Year	#	Milestone
	2013	HP8	Measure flavor-identified q and \overline{q} contributions to the spin of the proton via the longitudinal-spin asymmetry of W production.
spin	2013	HP12 (update of HP1)	Utilize polarized proton collisions at center of mass energies of 200 and 500 GeV, in combination with global QCD analyses, to determine if gluons have appreciable polarization over any range of momentum fraction between 1 and 30% of the momentum of a polarized proton.
	2015	HP13 (new)	Test unique QCD predictions for relations between single-transverse spin phenomena in p-p scattering and those observed in deep-inelastic lepton scattering
	2014	DM9 (new)	Perform calculations including viscous hydrodynamics to quantify, or place an upper limit on, the viscosity of the nearly perfect fluid discovered at RHIC.
	2014	DM10 (new)	Measure jet and photon production and their correlations in A≈200 ion+ion collisions at energies from medium RHIC energies to the highest achievable energies at LHC.
vy ion	2015	DM11 (new)	Measure bulk properties, particle spectra, correlations and fluctuations in Au + Au collisions at \sqrt{sNN} between 5 and 60 GeV to search for evidence of a critical point in the QCD matter phase diagram.
Heavy	2016	DM12 (new)	Measure production rates, high pT spectra, and correlations in heavy-ion collisions at $\sqrt{\text{sNN}} = 200 \text{ GeV}$ for identified hadrons with heavy flavor valence quarks to constrain the mechanism for parton energy loss in the quark-gluon plasma.
	2018	DM13 (new)	Measure real and virtual thermal photon production in p + p, d + Au and Au + Au collisions at energies up to $\sqrt{sNN} = 200$ GeV.

Making clear progress toward all the above! New "small" exp't AnDY under consideration to address HP13 via Drell-Yan spin asymmetries.

Not all the exciting physics from RHIC is yet incorporated in existing milestones...

For example:

- 1) Does explanation of Local Parity Violating bubbles (and close analogy to speculated origin of baryon-antibaryon asymmetry at EW phase transition) hold up under more detailed scrutiny (energy dependence, U+U collisions)?
- 2) Can we observe predicted sequential melting of different quarkonium species in QGP?
- 3) Are gluon densities saturated in RHIC's colliding (cold) nuclei?
- 4) Can we produce even heavier anti-hypernuclei?

Updated RHIC 5-Year Run Plan

Assumes sufficient ops. funding for healthy 2-species run each year; aimed at meeting NP Performance Milestones on schedule; will be updated as we have definitive information about upgrade schedule and/or budget changes

Year	Likely Beam Species	Science Goals	New Detector Sub- systems	New Machine Upgrades	Gain from Machine Upgrades	Comments
FY10	Au+Au at 200, 62.4 GeV + assorted lower E	Low-mass dilepton spectrum; early collision temp.; improved jet quenching studies (especially e ⁻ from heavy quarks); begin energy scan for critical pt.	STAR TOF completed; PHENIX HBD for heavy ions	Blue ring longitudinal + yellow and blue vertical stochastic cooling; yellow longitudinal cooling (µwave link) upgrade	Factor >2 increase in average store luminosity for full- energy Au+Au	Need 4-8 weeks early in run to (re)com- mission all 4 stoch. cooling systems, demonstrate gain in lumi. lifetime
FY11	200 GeV Au+Au; 500 GeV p+p; short 200 GeV U+U; continue low-E Au+Au scan	Bottom vs. charm suppression, flow; antiquark pol'n from W production; 1 st characterization of deformation effects in U+U centrality distrib'ns; continue critical pt. search	PHENIX VTX engineer- ing run; AnDY installed, commis- sioned in IP2	EBIS commis- sioning; 9 MHz cavity; RHIC beam dump; AGS tune jump quads (comm'd in Run 10); RHIC spin flipper	U beam capability; improved pp vertex distrib'n; improved pol'n from AGS; reduced syst. errors	9MHz requires upgrade to main PS + "bouncer" cavity for both rings + longitudinal damper or Landau cavity for each ring.

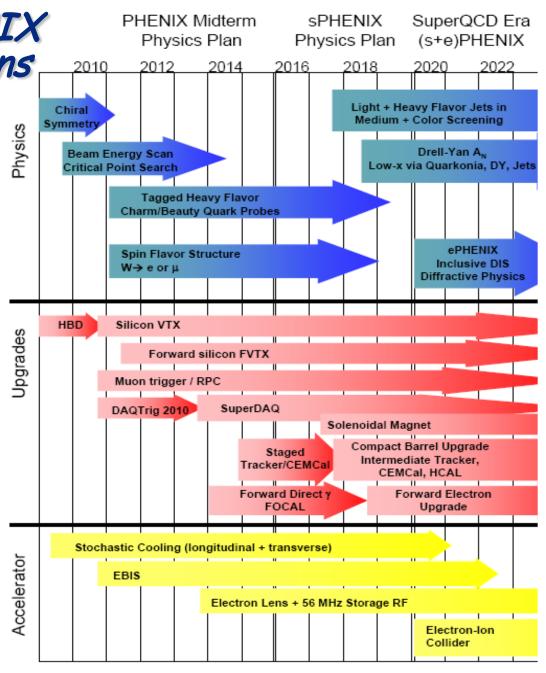
Year	Likely Beam Species	Science Goals	New Detector Sub- systems	New Machine Upgrades	Gain from Machine Upgrades	Comments
FY12	Au+Au and U+U at 200 GeV; 500 GeV p+p	RHIC-II HI goals: heavy flavor, γ-jet, quarkonium, multi-particle correlations; anti- quark and low-x gluon polariza- tions in proton	PHENIX FVTX and μ trigger; PHENIX DAQ/trig upgrades; STAR FGT	Full yellow + blue horiz. stoch. cooling (6 planes in all);	Further heavy-ion luminosity improve- ments + improved proton polarization	"Proton cannon" increases pol. source current, to allow scraping to improve polarization
FY13	200 + 500 GeV p+p; further heavy-ion running to comple- ment earlier runs	Continue RHIC-II heavy-ion goals; transverse spin asymmetry for Drell-Yan (2015 spin milestone); pp reference data for new subsystems	STAR HFT prototype	Polarized source upgrade; Electron lenses	improved pp luminos- ity	Electron lens commission- ing \Rightarrow Run 13 gains possible; detailed collimator upgrade plans still to be developed
FY14	200 GeV Au+Au; low-E Au+ Au dictated by Run 10+ 11 results	Continue pursuit of γ + jet, energy scan and identified heavy flavor (DM10-12) milestones; quarkonium prodn	STAR HFT pixel det. (full HFT in Run 15); 50% STAR MTD ?	RHIC collimator upgrade; 56 MHz SRF; coherent e- cooling install starts in IP2	Full RHIC-II heavy-ion luminosity + improved vertex & store length	

Short-Term Take-Away Message:

1) There are a good number of exciting physics questions to pursue for next ~5 years, fueled by recent and ongoing upgrades.

2) RHIC operations are likely to be funded reasonably for next ~5 years, barring federal budget disasters (which could well occur!).

3) We will get asked repeatedly why RHIC funding should continue, when there is a newer machine that can address similar issues, and budgets are very tight. Early LHC HI results + emerging results from RHIC beam energy scan ⇒ RHIC is in a "sweet spot" in energy range & can exploit beam species versatility.


4) We need to develop a coherent strategy for RHIC's longterm future during the next two years. The user community must be actively engaged in this process.

The Different Approaches of PHENIX & STAR Decadal Plans

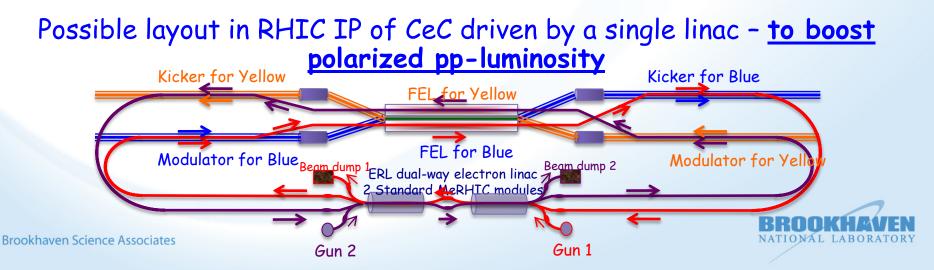
Questions for PHENIX Plan:

- 1) Does science case justify major overhaul \$\$\$?
- 2) Does jet focus play too much into LHC strengths?
- 3) Can we understand parton interactions in QGP well enough for jets to quantitatively probe degrees of freedom vs. length scale?
- 4) Can we supplement DOE \$ by foreign investments? Stage barrel upgrades?
- 5) Is ePHENIX well enough integrated into Plan?

The Different A	Approaches	of PHEN	IIX & 51	FAR
Decadal Plans		Near term (Runs 11–13)	Mid-decade (Runs 14–16)	Long term (Runs 17–)
Questions for STAR Plan:	Colliding systems	p+p, A+A	p+p, A+A	p+p, p+A, A+A, e+p, e+A
1) What is the need for	Upgrades	FGT, FHC, RP, DAQ10K, Trigger	HFT, MTD, Trigger	Forward Instrum, eSTAR, Trigger
A+A beyond 2017? Are collaborators primarily interested in	(1) Properties of sQGP	$\Upsilon, J/\psi \rightarrow ee,$ m_{ee}, v_2	$\Upsilon, J/\psi \rightarrow \mu\mu,$ Charm $v_2, R_{CP},$ Charm corr, Λ_c/D ratio, μ -atoms	p+A comparison
HI collisions on board with Plan?	(2) Mechanism of energy loss	Jets, γ -jet, NPE	Charm, Bottom	Jets in CNM, SIDIS, c/b in CNM
2) Is science plan strong enough to support	(3) QCD critical point	Fluctuations, correlations, particle ratios	Focused study of critical point region	
RHIC operations	(4) Novel symmetries	Azimuthal corr, spectral function	$e - \mu$ corr, $\mu - \mu$ corr	
beyond ~2017?	(5) Exotic particles	Heavy anti-matter, glueballs		
3) Will TPC remain robust throughout	(6) Proton spin structure	$W A_L$, jet and di-jet A_{LL} , intra-jet corr, $(\Lambda + \overline{\Lambda}) D_{LL}/D_{TT}$		$\bar{\Lambda} D_{LL}/D_{TT},$ polarized DIS, polarized SIDIS
another decade?	(7) QCD beyond collinear factorization	Forward A_N		Drell-Yan, F-F corr, polarized SIDIS
 4) What is time scale for fleshing out what eSTAR comprises? 	(8) Properties of initial state			Charm corr, Drell-Yan, J/ψ , F-F corr, Λ , DIS, SIDIS

Charge for June 6-8 PAC Review of Decadal Plans

- 1) Are the science goals in each Plan well-posed and compelling? Are there important questions addressable with RHIC's capabilities (perhaps after minor upgrades) that you find missing from the Collaboration's list?
- 2) How well do the suggested <u>measurement programs answer the highlighted science</u> <u>questions?</u> Are there additional simulations or theoretical work that would strengthen the case for making those measurements?
- 3) Are the suggested <u>measurement techniques and upgrades essential for answering</u> these questions? (For example, can some questions be adequately answered by high-p_T hadron detection without full jet reconstruction?)
- 4) Is the complementarity of the proposed RHIC program and of LHC heavy-ion capabilities clearly defined and convincing? If not, what would it take to clarify complementarity?
- 5) Do the measurements proposed with polarized beams constitute a compelling extension of the RHIC Spin Program, achievable with anticipated integrated luminosities?
- 6) Do the plans and proposed detector upgrades provide the basis for a <u>useful transition</u> of each Collaboration to an era with substantial focus on ep and eA collisions at an eRHIC?
- 7) How would you rank the priority (high, medium or low) of each proposed upgrade, taking into account both scientific and technical merit and rough estimates of cost?
- 8) Does the suite of proposed measurements justify RHIC operations beyond ~2017, assuming RHIC-II luminosities? If not yet, how can the case be strengthened?


Possible Decadal Machine Upgrades

Among possible collider upgrades under discussion beyond ~2017 are: > Low-energy electron cooling if beam energy scan results make compelling case for higher luminosity running below HI injection energy

> 12 GHz upgrade of stochastic cooling systems for further luminosity increase of high-energy HI collisions

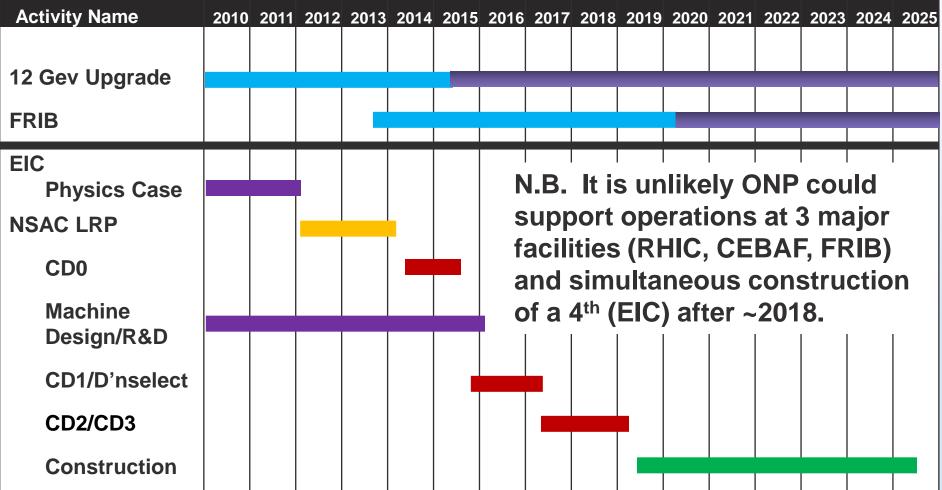
> Removal of DX magnets and IR rebuild to allow higher beam energy (especially useful for pp) and lower β^* , thus higher luminosity

Coherent electron Cooling (CeC) to boost pp luminosities. CeC is needed for eRHIC, and proof-of-principle demonstration is BNL-JLab-Tech X R&D collaboration with ONP funding.

Medium-Term Take-Away Message:

1) Need PAC feedback mostly on basic question: do Decadal Plans provide compelling basis for developing RHIC operations case beyond ~2017? How could they be sharpened to do so better?

2) The argument of complementarity with LHC HI needs to be sharpened: what are the unique and critical strengths RHIC brings to the investigation of QCD matter?


2) All detector and machine upgrade plans for this period need to be clearly connected to a long-term strategy for the facility.

3) The PHENIX and STAR Decadal Plans are the beginning of a process of defining the long-term strategy. There are significant questions for both, and both are likely to evolve as we develop the long-term strategy.

4) It will be extremely challenging to attract DOE funding at levels > ~ \$20M for machine and detector upgrades in this period, unless they are part of a larger project, such as eRHIC, or can be shown to save costs for a later eRHIC. Foreign and NSF contributions can certainly help.

Potential Electron-Ion Collider Timeline Shown by Hugh Montgomery at INT Workshop, Sept. 2010

EIC Realization Imagined

Brookhaven Science Associates

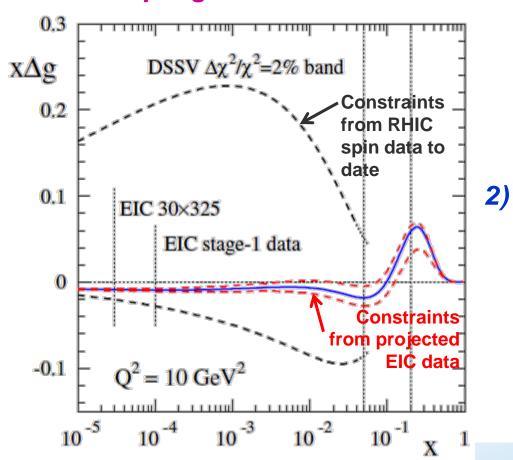
NATIONAL LABORATORY

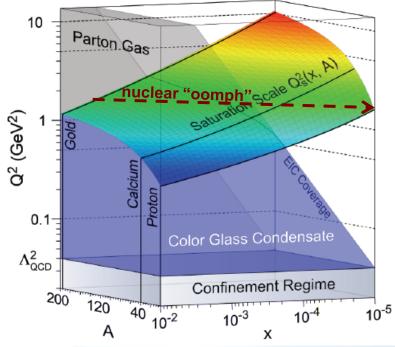
EIC ⇒ High-Resolution, Ultra-Fast Imaging of Gluon-Dominated Matter

Twin central themes:

1) Probing the momentum-dependence of gluon densities and the onset of saturation in nucleons and nuclei

2) Mapping the transverse spatial and spin distributions of quarks and gluons in the gluon-dominated regime

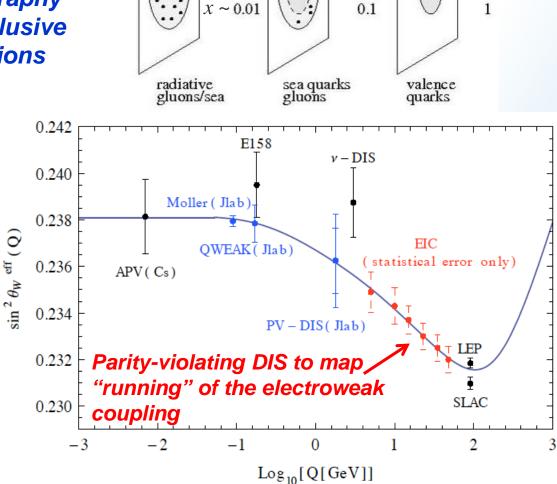

Real questions from Galveston LRP 2007:


- 1) Why should we care about gluon-dominated matter? How do goals connect to other physics goals? Why of interest to nuclear physicists?
- 2) Is an electron machine necessary? Why not just p+A @ RHIC, LHC?
- 3) What will EIC do that HERA couldn't?
- 4) If we haven't solved the nucleon spin puzzle yet, why do we need a new expensive facility to pursue it further?

At next LRP, need to answer these questions crisply! Non-linear QCD regime of high gluon density is critical to understanding high-energy scattering and hadron mass generation. EIC would probe it in theoretically tractable region.

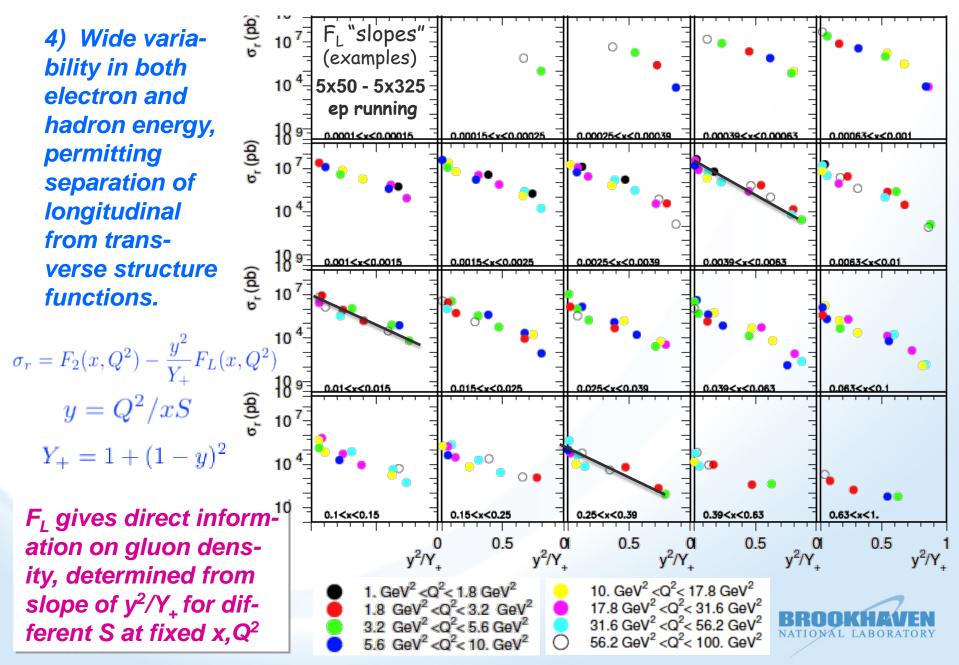
What Will EIC Have That HERA Didn't?

1) Heavy-ion beams to take advantage of coherent contributions of many nucleons to gluon density, provide more cost-effective reach into gluon saturation regime when QCD coupling is still weak.



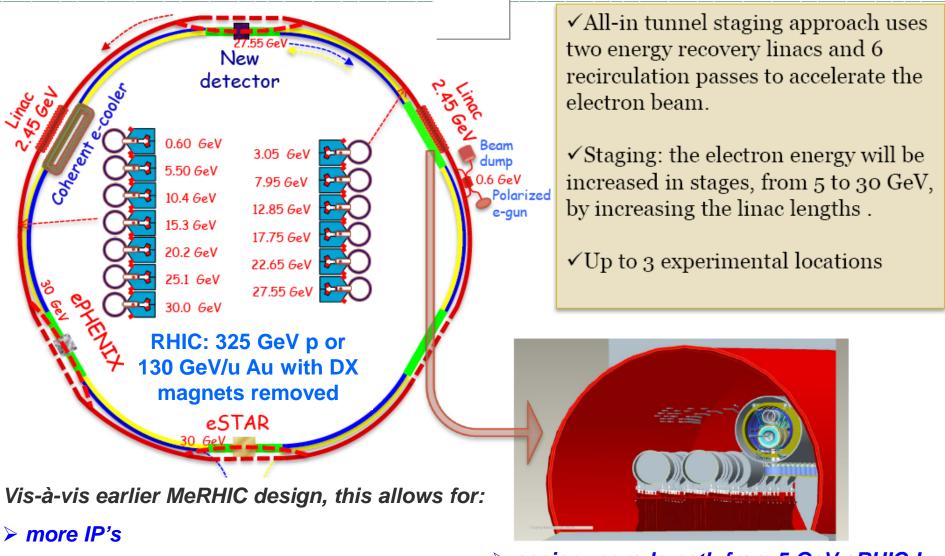
) Polarized proton and ³He (for neutron), as well as electron, beams to pursue search for gluon contributions to nucleon spin down to very soft gluons, and map spin-momentum correlations of quarks and gluons inside nucleons.

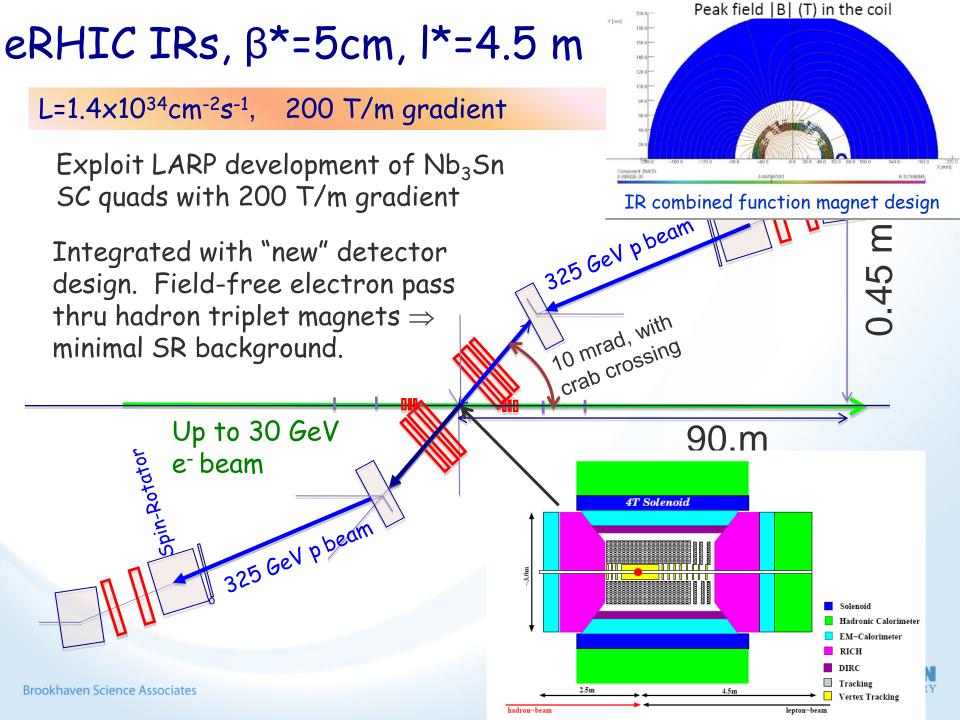
What Will EIC Have That HERA Didn't?


pQCD radiation non-pert. xP interact. saturation -30b **Proton** tomography longitud. $x \sim 0.01$ 0.1 1 transverse via exclusive reactions radiative valence

3) 3 orders of magnitude higher collision luminosity to facilitate exclusive reaction studies yielding 2+1dim'l maps of internal nucleon wave function, and symmetry violation studies of fundamental electroweak interaction properties.

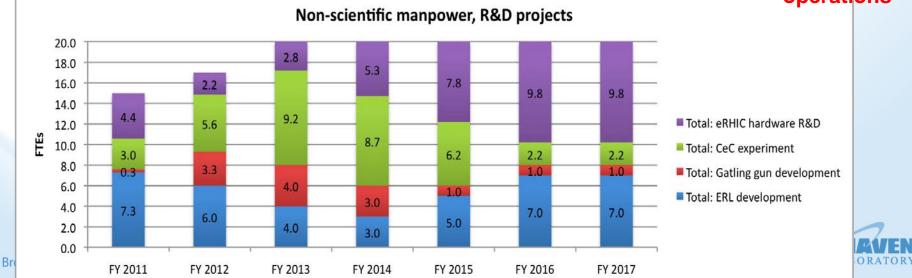
Brookhaven Science Associates


What Will EIC Have That HERA Didn't?


e+A Golden Science Matrix

Primary new science deliverables	What we hope to fundamentally learn	Basic measurements	Typical required precision	Special requirements on accelerator/ detector	What can be done in phase I	Alternatives in absence of an EIC	Gain/Loss compared with other relevant facilities	Comments
integrated nuclear gluon distribution	The nuclear wave function throughout x-Q ² plane	FL, F2, FL ^c , F2 ^c	What HERA reached for F2 with combined data	displaced vertex detector for charm	stage 1: large- x & large-Q ² need full EIC, for F _L and F ₂ ^c	p+A at LHC (not as precise though) & LHeC	First experiment with good x, Q ² & A range	This is fundamental input for A+A collisions
k _T dependence of gluon distribution and correlations	The non- linear QCD evolution - Qs	SIDIS & di- hadron correlations with light and heavy flavours		Need low-pt particle ID	SIDIS for sure TBD: saturation signal in di- hadron p _T imbalance	I) p+A at RHIC/LHC, although e+A needed to check universality 2) LHeC	Cleaner than p+A: reduced background	
b dependence of gluon distribution and correlations	Interplay between small-x evolution and confinement	Diffractive VM production and DVCS, coherent and incoherent parts	50 MeV resolution on momentum transfer	hermetic detector with 4pi coverage low-t: need to detect nuclear break-up	Moderate x with light and heavy nuclei	LHeC	Never been measured before	Initial conditions for HI collisions – eccentricity fluctuations

eRHIC Design Under Active Consideration


- reduced cost
- reusing infrastructure + det. components for STAR, PHENIX
- easier upgrade path from 5 GeV eRHIC-I
- > minimal environmental impact concerns
- > IR design to reach 10³⁴ luminosity

eRHIC Accelerator R&D is a Major Long-Term Commitment

	FY 2011	FY 2012	FY 2013	FY 2014	FY 2015	FY 2016	FY 2017
ERL constr./commissioning	7.3	6.0	4.0	1.0	1.0	1.0	1.0
Second return loop				2.0	4.0	6.0	6.0
Total: ERL development	7.3	6.0	4.0	3.0	5.0	7.0	7.0
Gatling Gun	0.3	3.3	4.0	3.0	1.0	1.0	1.0
Total: Gatling gun development	0.3	3.3	4.0	3.0	1.0	1.0	1.0
CeC POP	2.0	2.2	6.2	8.7	6.2	2.2	2.2
112 MHz Gun / Cryomodule		1.0	1.0				
BNL-3 "eRHIC" Cavity & Cryomodule	1.0	2.4	2.0				
Total: CeC experiment	3.0	5.6	9.2	8.7	6.2	2.2	2.2
eRHIC Design / cost estimate	3.9	1.3	2.3	2.3	2.3	2.3	2.3
Small gap magnets	0.5	0.9	0.5				
Crab cavities				2.0	2.5	4.5	4.5
eRHIC RF power & control				1.0	3.0	3.0	3.0
Total: eRHIC hardware R&D	4.4	2.2	2.8	5.3	7.8	9.8	9.8
Total non-scientific:	15.0	17.0	20.0	20.0	20.0	20.0	20.0
Total scientific:	10.0	10.0	10.0	10.0	10.0	10.0	10.0

30 FTE supported from RHIC

operations

Upcoming and Recent Planning Exercises and Milestones

April 10, 2011: 3rd EIC International Advisory Committee meeting

May 9-10, 2011: Detector Advisory Committee review of first round of submitted EIC detector R&D proposals

June 6-8, 2011: PAC review of PHENIX & STAR Decadal Plans

June 21-24, 2011: *RHIC user workshop to develop optimal RHIC strategy going into LRP*

June 27-29, 2011: *RHIC annual S&T review with 'all-star' panel*

August 1-3, 2011: eRHIC technical design review

Bro

Fall 2011: *EIC science White Paper* (Steering Committee appointed and charged, with BNL-JLab-EICC agreement); *eRHIC cost review*

Fall 2012 (??): Town Meetings for next Nuclear Physics LRP? ⇒ Formulate RHIC strategy clearly by Summer 2012, presumably by time of August 2012 Quark Matter in Washington, D.C.

RY

Agenda for Users' Workshop on RHIC Future Strategy (June 21-24, 2011)

Session I: Long-Term Options and Near-Term Plans

Session II: The Role of Heavy Ion Collisions at RHIC Beyond ~2017

Session III: PHENIX and STAR Decadal Plans

Session IV: eRHIC S&T

Session V: Panel and Community Discussion Toward Developing a RHIC Strategy to Present at Next Long Range Plan

Among the critical questions to be discussed:

1) Since LHC HI results very similar to RHIC's, are both facilities needed? Which critical QCD matter questions are best answered at RHIC? 2) Will 2-3 year cessation of RHIC ops. be essential to fund eRHIC? If so, what is optimal timing?

3) Is it crucial to maintain AA & pp capability into eRHIC era? If so, can we reconfigure IR's annually, or do we separate HI from eA in different IR's?
4) What eRHIC science is realizable within \$500M total project cost limit?
5) What is optimal path for detectors and collaborations to evolve from RHIC to eRHIC?

Aim for EIC Science White Paper by End of CY2011

- 2010 INT Workshop "yellow book" anticipated ~500 pages, available Spring 2011 should serve as starting point, but...
- White Paper should be ~100 pages, aimed at non-experts, useful for "champions" within DOE, suitable for rest of NP community
- Needs ~5-page general intro ("elevator speech" amplified) to lay out goals, importance and uniqueness, answer basic questions raised at last Long Range Plan in clear, concise, compelling fashion
- ~10-page science sections to flesh out "golden experiment matrices" for several areas, with simulated "money plots," light on technical detail
- ~10-15 pages on basic machine parameters, design options, challenges + ~10 pages on detector design features and challenges
- Steering Committee comprising experimentalist / theorist pairs, broadly representative of interested institutions, in scientific focus areas listed below:
- Overall editors: A. Deshpande (Stony Brook), J. Qiu (BNL) and Z.-E. Meziani (Temple) Gluon saturation in e+A: T. Ullrich (BNL) and Y. Kovchegov (Ohio State U.) Nucleon spin structure (mostly inclusive e+N): E. Sichtermann (LBNL) and W. Vogelsang (Tubingen)
- GPD's and exclusive reactions: F. Sabatie (Saclay) and M. Diehl (DESY) TMD's, hadronization and SIDIS: H. Gao (Duke) and F. Yuan (LBNL) Electroweak physics: K. Kumar (U. Mass.) and M. Ramsey-Musolf (Wisconsin) Accelerator designs and challenges: T. Roser (BNL) and A. Hutton (JLab) Detector design and challenges: E. Aschenauer (BNL) and T. Horn (CUA) Senior advisors: R. Holt (ANL) and A. Mueller (Columbia)

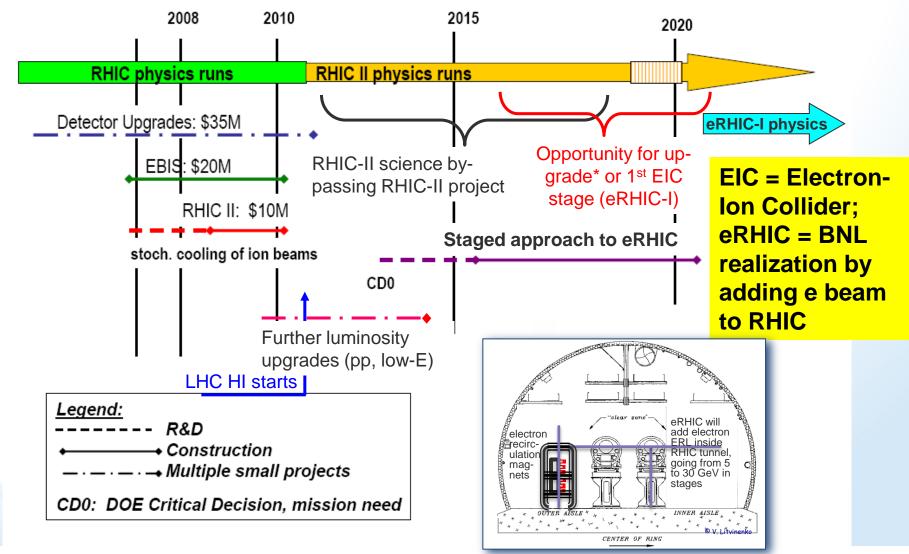
Long-Term Take-Away Message:

1) The immediate eRHIC focus should be on defining the science program clearly, crisply, compellingly and on doing reasonable facility cost estimates. Let BNL management and DOE worry about (healthy) competition with JLab.

2) A full, new collider detector with new exp'tal hall is not likely to fit within cost cap for a 1st stage eRHIC \Rightarrow must incorporate STAR and PHENIX upgrade plans to make them viable ep/eA detectors, while also pursuing foreign contributions to a new detector.

3) Work on eSTAR, ePHENIX needs to be coordinated with work already done and ongoing for generic EIC detector, and needs to be integrated (non-trivial!) with machine lattice in IR regions

4) RHIC user community needs to participate actively in defining a path to eRHIC, as well as its detailed configuration. The process must take into account realistic constraints imposed by federal budgets, other developments in the field, and the need to have champions for the project within DOE.



Backup Slides

Brookhaven Science Associates

A Long Term (Evolving) Strategic View for RHIC

* New PHENIX and STAR Decadal Plans provide options for this period. Dedicated storage ring for novel charged-particle EDM measurements another option.

Why Should We Care About Gluon-Dominated Matter? Gluons and Mass Without Mass...

F. Wilczek, in "The Origin of Mass":

"Its enhanced coupling to soft radiation...means that...a 'bare' color charge, inserted into empty space, will start to surround itself with a cloud of virtual color gluons. These color gluon fields themselves carry color charge, so they are sources of additional soft radiation. The result is a self-catalyzing enhancement that leads to runaway growth. A small color charge, in isolation, builds up a big color thundercloud... theoretically the energy for a quark in isolation is infinite... Having only a finite amount of energy to work with, Nature always finds a way to short-circuit the ultimate thundercloud."

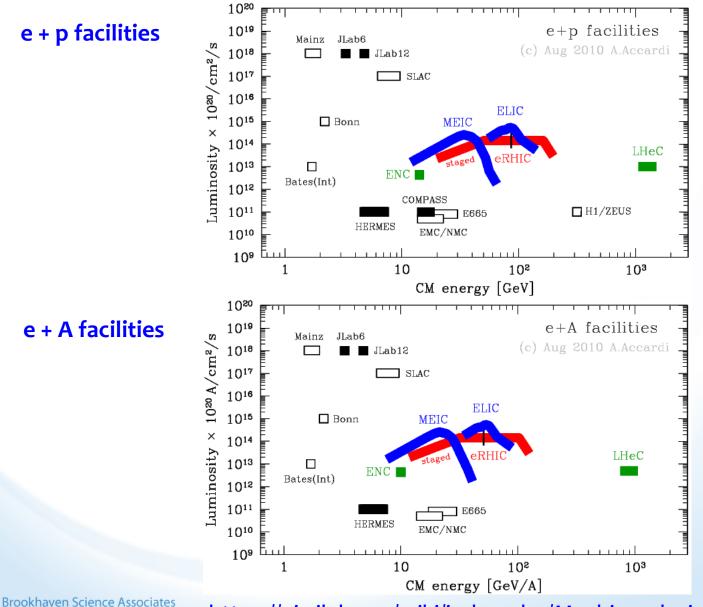
Confinement of color-coordinated quarks inside hadrons cancels the "thundercloud" at long distances from the hadron. But the short-circuit mechanism also needs saturation of gluon densities (via $gg \rightarrow g$ recombination) to limit the growth of gluon fields inside the hadron.

 \Rightarrow Need to probe gluons in non-linear QCD regime of high gluon density \Rightarrow Need high energies for "soft" glue, but can use heavy nuclei to boost reach, lower cost, probe onset of gluon saturation inside nuclear matter

m

Why An Electron Machine?

Electron accelerators have traditionally been used for quantitative characterization of phenomena discovered at hadron machines:


Example table from C. Baltay talk at June 2010 NUFO Meeting

Proton Accelerators	Electron Accelerators
AGS(30 Gev p) discovered bump J	SPEAR(3 Gev e+e-) interpretation as charm charmed particle spectroscopy
FNAL(400 Gev p) discovered bump Υ	CESR(10 Gev e+e-) interpretation as b quark particles with b quarks
CERN SppS(800 Gev pp) discovered W, Z	LEP, SLC (100 Gev e+e-) detailed precision electroweak
LHC (14 Tev pp) discovery of X	ILC (0.5 - 1.0 Tev e+e-) detailed understanding of new physics

RHIC, LHC may ⇒ hints of gluon saturation, but need eA to probe quantitatively, despite primary EM sensitivity to quarks, rather than gluons.
Electron Deep Inelastic Scattering (DIS) is the best demonstrated method to provide time-dilated "freeze-frame" imaging of partons in matter.

Broo

Collider Performance Parameters for RHIC vs. JLab Designs Have Converged in Past Year

https://eic.jlab.org/wiki/index.php/Machine designs

Science Deliverable	Basic Measurement	Uniqueness and Feasibility	Requirements
spin structure at small x contribution of Δg, ΔΣ to spin sum rule	inclusive DIS		minimal large x,Q² coverage about 10fb ⁻¹
full flavor separation in large x,Q ² range strangeness, s(x)-s(x)	semi-inclusive DIS		very similar to DIS particle ID improved FFs (Belle,LHC)
electroweak probes of proton structure flavor separation electroweak parameters	inclusive DIS at high Q²	some unp. results from HERA	20x250 to 30x325 positron beam polarized ³ He beam
treatment of heavy flavors in pQCD	DIS (g_1 , F_2 , and F_L) with tagged charm	some results from HERA	large x,Q² coverage charm tag
(un)polarized γ PDFs relevant for γγ physics at an ILC	photoproduction of inclusive hadrons, charm, jets	unp. not completely unknown	tag low Q² events about 10 fb ⁻¹

Agenda for Users' Workshop on RHIC Future Strategy (June 21-24, 2011)

Tuesday, June 21 Ses	sion I: Long-Term Options and Near-	Term Plans Chair: T. Ludlam
8:30-9:10 am*	S. Vigdor, BNL	Purpose and scope of workshop; long-term strategy options and constraints
9:10-9:50 am	W. Fischer, BNL	Ongoing RHIC machine upgrades and performance projections
9:50-10:20 am	Coffee Break and Poster Session	n
10:20-11:00 am	M. Leitch, LANL	Ongoing PHENIX upgrades + science strategy (HI and spin) for coming ~5 years
11:00-11:40 am	J. Dunlop, BNL	Ongoing STAR upgrades + science strategy (HI and spin) for coming ~5 years
11:40 am-12:25 pm	J. Harris, Yale	Early results and future prospects for LHC heavy-ion program
Tuesday, June 21 Ses	sion II: Decadal Planning for Heavy-l	Ion Collisions Chair: L. McLerran
2:00-2:45 pm	D. Morrison, BNL	PHENIX heavy-ion science goals and upgrade strategies beyond 2015
2:45-3:30 pm	Z. Xu, BNL	STAR heavy-ion science goals and upgrade strategies beyond 2015
3:30-4:00 pm	K. Rajagopal, MIT	PAC feedback on PHENIX and STAR decadal plans
4:00-4:30 pm	Coffee Break and Poster Session	n
4:30-5:15 pm	B. Mueller, Duke	Compelling open and quantifiably addressable questions that require next generation of RHIC – Take 1
5:15-6:00 pm	D. Kharzeev, BNL/Stony Brook	Compelling open and quantifiably addressable questions that require next generation of RHIC – Take 2
6:00-7:00 pm	Cocktail Hour, Berkner Hall Lo	bbby (compliments of BSA)
·	Session III: Decadal Planning, Contin	
8:30-9:15 am	P. Steinberg, BNL	Experimentalist's view of the science case for RHIC HI beyond 2015
9:15-10:00 am	C. Gagliardi, Texas A&M U.	STAR spin program goals and upgrades beyond 2015, including possible migration toward eRHIC capabilities
10:00-10:30 am	Coffee Break and Poster Session	n
10:30-11:15 am	M. Grosse-Perdekamp, U. Illinois	PHENIX spin program goals and upgrades beyond 2015, including possible migration toward eRHIC capabilities
11:15 am - noon	M. Stratmann, BNL	Theorist's priorities for RHIC spin and p/d+A programs beyond 2015

B

Agenda for Users' Workshop on RHIC Future Strategy (June 21-24, 2011)

Wednesday, June 22	Session IV: eRHIC	Chair: J. Qiu		
1:30-2:15 pm	R. Venugopalan, BNL	Why is an Electron-Ion Collider needed?		
2:15-3:00 pm	M. Lamont, BNL	EIC eA science program, including 1st stage goals		
3:00-3:45 pm	E. Sichtermann, LBNL	EIC spin science program, including 1st stage goals		
3:45-4:15 pm	Coffee Break and Poster Sess	ion		
4:15-5:00 pm	V. Litvinenko, BNL	eRHIC design and R&D		
5:00-5:45 pm	E. Aschenauer, BNL	eRHIC detectors: ideal vs. eSTAR and ePHENIX possibilities		
6:30-8:30 pm	Optional Dinner at the Beach			
Friday, June 24 Sessi	on V: Developing a RHIC Strategy	to Present at Plan Chair: S. Vigdor		
8:45-9:00 am	H. Caines, Yale	Poster Award & UEC Election Results		
9:00-9:40 am	V. Ptitsyn, BNL	Possibilities for maintaining AA and pp capabilities in parallel with eRHIC		
9:40 am-12:30 pm	Y. Akiba, RIKEN/RBRC H. Caines, Yale A. Deshpande, Stony Brook U. Heinz, Ohio State T. Roser, BNL T.J. Symons, LBNL Moderator: S. Vigdor, BNL	 Panel and Community Discussion of RHIC Future Strategy Among the issues: What is the optimal trajectory for RHIC? What are critical decisions and branch points? Since LHC HI results seem very similar to RHIC's, are both facilities needed? Which critical QCD matter science questions are best answered at RHIC? Will 2-3 year cessation of RHIC operations be essential to fund eRHIC? If so, what is optimal timing? Is it crucial to maintain AA & pp capability into eRHIC era? If so, can we reconfigure IR's annually, or do we separate HI from eA in different IR's? What eRHIC science is realizable within a reasonable total project cost limit? How do STAR and PHENIX Collaborations evolve smoothly from RHIC to eRHIC? 		
l				