




#### Content

#### **Run-12 overview**

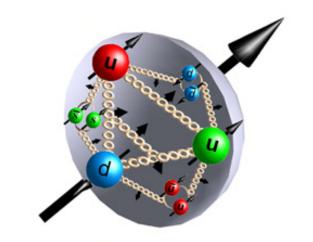
- Polarized protons,  $\sqrt{s} = 200$ , 510 GeV
- Uranium-uranium  $\sqrt{s_{NN}} = 193$  GeV, copper-gold  $\sqrt{s_{NN}} = 200$  GeV

#### Heavy upgrades and projections

- Luminosity with stochastic cooling & 56 MHz SRF
- Energy scan and low energy cooling

#### Polarized proton upgrades and projections

- Polarization and luminosity with source upgrade
- Luminosity with RHIC electron lenses
- R&D for polarized <sup>3</sup>He


#### 2012 RHIC Run (23 weeks of cryo ops) — most varied to date

#### 100 GeV polarized protons

new records for  $L_{\text{peak}}$ ,  $L_{\text{avg}}$ , P

#### 255 GeV polarized protons

highest energy polarized proton beam new records for  $L_{peak}$ ,  $L_{avg}$ , P



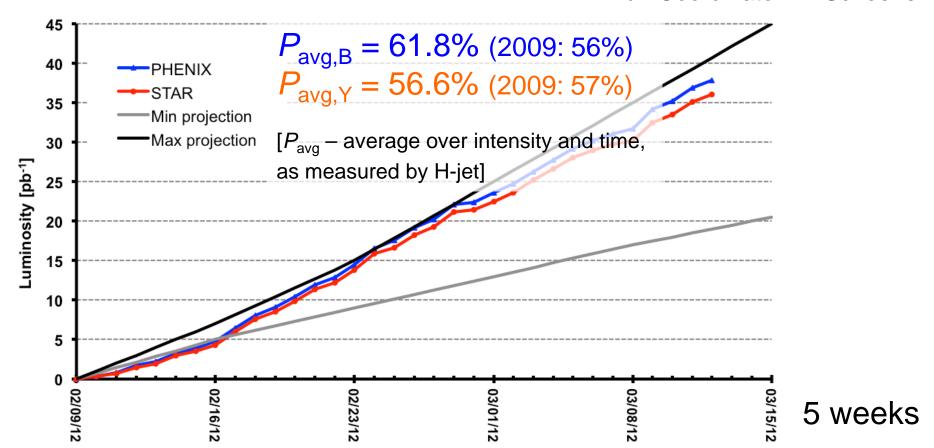
# neutror

**Uranium Nucleus** 

#### 96.4 GeV/nucleon uranium-uranium

heaviest element in collider, shape stochastic cooling:  $L_{max} > L_0$  1st time in hadron collider! all ions lost through burn-off 1st time in hadron collider!

#### 100 GeV/nucleon copper-gold

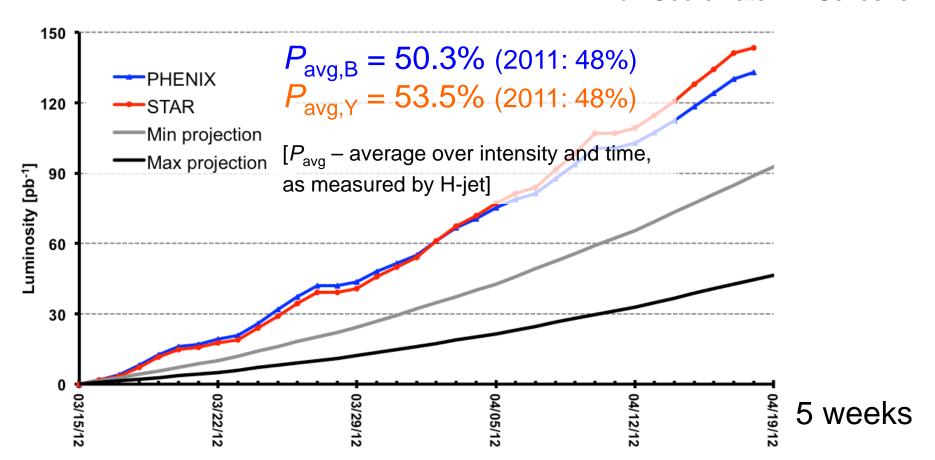

new species combination

#### possibly 2.5 GeV/nucleon gold-gold test (2 days)

lowest energy to date, 20% of nominal injection E

#### Run-12 - Polarized protons 100 GeV

Run Coordinator: V. Schoeffer




New: 2 new Landau cavities installed in RHIC; AGS horizontal alignment; 9 MHz system upgraded; AGS horizontal tune jump timing improved; operation from new Main Control Room; down ramp does not stop at injection any more, ramp from park to injection with 2x ramp speed compared to previous runs (saves 2.9 min per ramp)

Polarization details at <a href="https://www.phy.bnl.gov/cnipol">www.phy.bnl.gov/cnipol</a> (D. Smirnov)

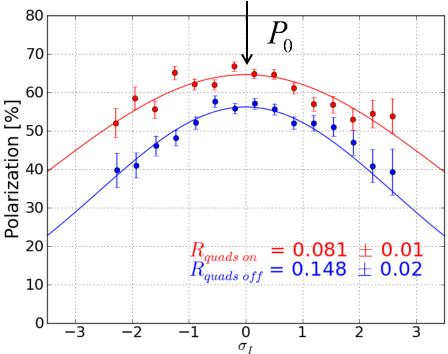
#### Run-12 - Polarized protons 255 GeV

Run Coordinator: V. Schoeffer



**New:** same as for 100 GeV; increased store energy to increase polarization lifetime; snakes ramp between 100 GeV and 255 GeV; scan of snake spin rotation axis angle and spin rotation angle; test of longitudinal injection damper; test of Landau phase error compensation (phase error from Booster) compensation

Polarization details at <a href="https://www.phy.bnl.gov/cnipol">www.phy.bnl.gov/cnipol</a> (D. Smirnov)


#### Polarization profiles and quantities of interest

Polarization can be characterized by

$$P_0$$
  $R = \frac{\sigma_I^2}{\sigma_P^2}$  center profile value parameter (no profile with  $R=0$ , can have  $R_x$ ,  $R_y$ ,  $R_s$ )

 Polarization P<sub>avg</sub> measured by H-jet is averaged over <u>intensity</u> and time

$$P_{avg} = \frac{P_0}{(1+R_x)(1+R_y)(1+R_s)}$$



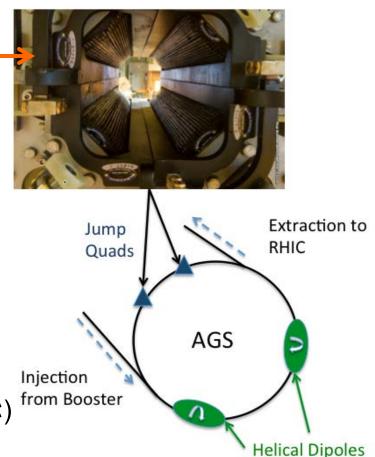
Polarization measurements as function of transverse position, with ultra-thin carbon target, at AGS extraction

 Luminosity-averaged quantities of interest for experiments:

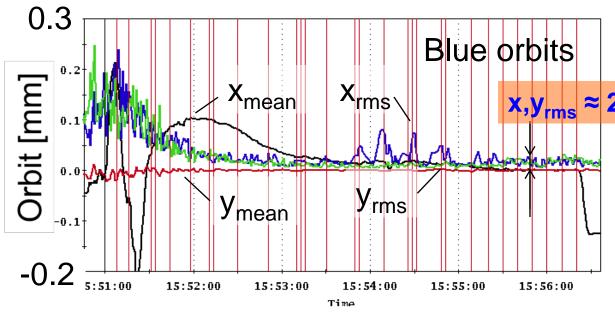
$$\langle P_B \rangle$$
,  $FOM_B = L \langle P_B^2 \rangle$  single-spin experiments  $\langle P_B \cdot P_Y \rangle$ ,  $FOM = L \langle P_B^2 \cdot P_Y^2 \rangle$  double-spin experiments

#### **RHIC Polarization status**

#### 2 types of depolarizing resonances


- Imperfection resonances (from vertical closed orbit errors):  $G\gamma = k$
- Intrinsic resonances (from vertical betatron motion):  $G\gamma = kP \pm Q_{\nu}$
- G anomalous magnetic moment (+1.79 for p, -4.18 for  $^3$ He)

#### Recent improvements (2011-2012)


- 80 horizontal tune jumps in AGS (weak horizontal resonances)
- AGS and RHIC re-alignment
- Operation with 9 MHz rf system (low  $\delta p/p$ )
- Acceleration near 2/3 (only 0.006 off; need orbit, tune, coupling feedback on every ramp)
- pC-polarimeter upgrade (rate dependence)

#### Future improvements

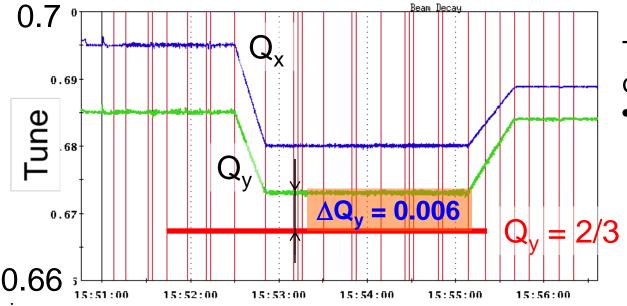
- Polarized source upgrade
- Possibly more RHIC snakes (also for <sup>3</sup>He<sup>222</sup>)



#### Beam control improvement – feedbacks on ramp



M. Minty, A. Marusic et al.


20  $\mu$ m (!)  $\approx$  3% of rms size

Orbit feedback on every ramp allows for

- Smaller y<sub>rms</sub> (smaller imperfection resonance strength)
- Ramp reproducibility (have 24 h orbit variation)

Tune/coupling feedback on every ramp allows for

 Acceleration near Q<sub>y</sub> = 2/3 (better P transmission compared to higher tune)



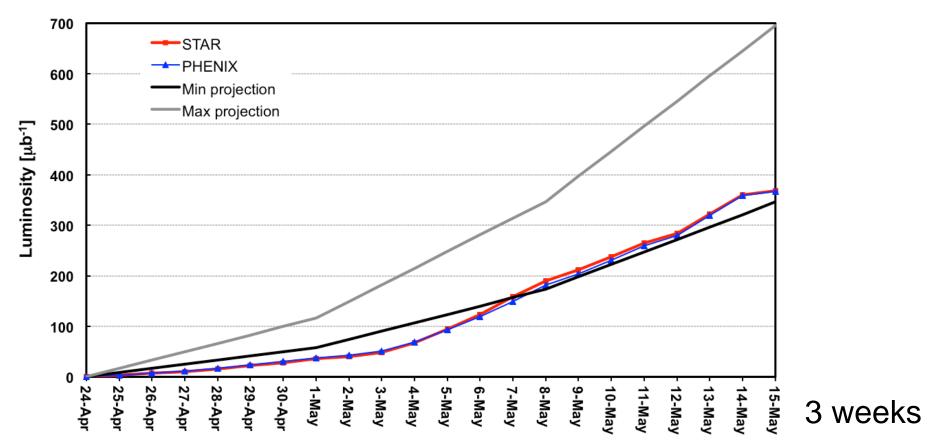
#### Polarization tests during Run-13 (M. Bai et al.)

#### Polarization lifetime at store (0.5-1.0%/h loss at 100 and 250 GeV)

- Energy change from 250 to 255 GeV => no difference
- Depolarization of non-colliding beam on/off the strongest snake resonance (=11/16) => no difference
- Spin tune change ±0.01=> no difference
- Snake spin rotation angle scan ±10 deg => small effect for -10 deg

#### Depolarization during energy and rotator ramps

- Orbit effect of last 2 strong intrinsic resonances
   => small effect for large orbit error
- Contribution of final  $\beta^*$ -squeeze => no difference
- Snake spin rotation angle => 5% (absolute) gain in Yellow
- Spin tune change ±0.01 => no difference


#### Absolute polarization at injection with H-jet

- 10 h for measurement in Yellow only (background minimization)
- $P_{avg} = (63\pm4.4)\%$

=> Unlikely that large polarization gains can be made by further parameter changes (depolarization due to many small effects)

#### Run-12 – Uranium-uranium 96.4 GeV/nucleon

Run Coordinator: Y. Luo



New: first use of EBIS for RHIC operation; first U-U operation in a collider; used standard <u>lattice to increase off-momentum dynamic aperture</u>; <u>first use of Blue and Yellow horizontal stochastic cooling (resulting in 3D cooling in both rings)</u>; due to small beam size need micro-vernier scan every 1/2 h

#### **Electron Beam Ion Source (EBIS)**

- Inject single charge ion from primary source (e.g. hollow cathode source)
- 10 A electron beam creates desired charge state in trap (5 T sc solenoid)
- Source for high-charge state, high brightness ion beams
- Accelerated through RFQ and linac, injected into AGS Booster
- All ion species including noble gas, <u>uranium</u> and polarized <sup>3</sup>He







Operated for NASA Space Radiation Laboratory in 2011-12 with

• He+, He<sup>2+</sup>, Ne<sup>5+</sup>, Ne<sup>8+</sup>, Ar<sup>10+</sup>, Kr<sup>18+</sup>, Ti<sup>18+</sup>, Fe<sup>20+</sup>, Ta<sup>33+</sup>, Ta<sup>38+</sup>

#### Operated for RHIC in 2012 with

U<sup>39+</sup> (not possible previously), Cu<sup>11+</sup>, Au<sup>31+</sup>



#### **Preparation of U beams for RHIC**

EBIS out: U<sup>39+</sup>



**AGS-to-RHIC transfer line** 

Stripping foil:

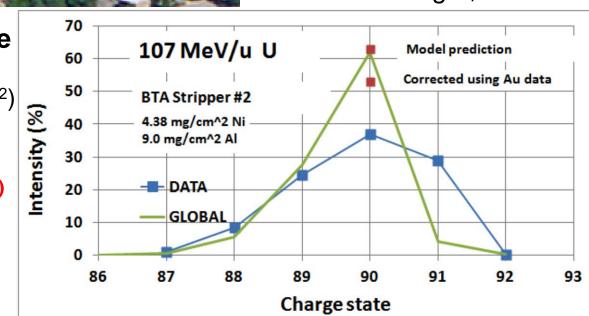
 $Al_2O_3$  (5.2 mg/cm<sup>2)</sup>

 $E_{kin} = 8.51 \text{ GeV/nucleon}$ 

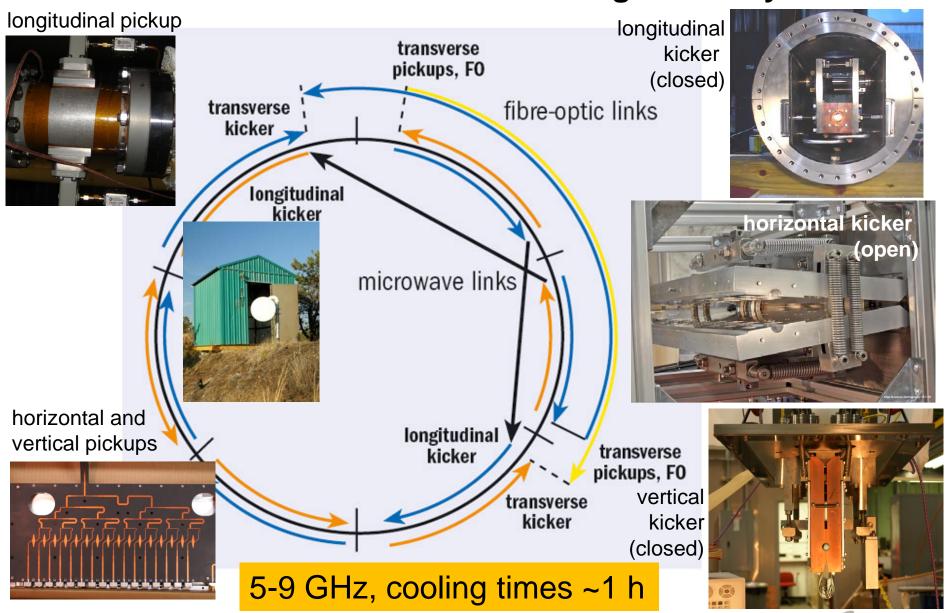
**U<sup>90+</sup> Y**<sub>0</sub> **U<sup>92+</sup>** (99.9% of intensity)

P. Thieberger, K. Zeno

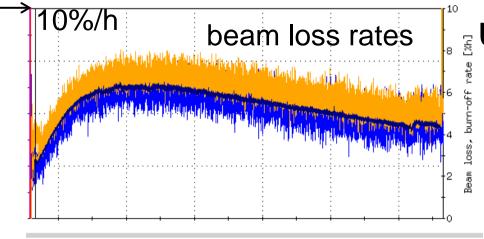
Booster-to-AGS transfer line


Stripping foil:

Ni  $(4.4 \text{ mg/cm}^2)$  + Al  $(9.0 \text{ mg/cm}^2)$ 


 $E_{kin} = 107 \text{ MeV/nucleon}$ 

 $U^{39+}$   $\mathcal{V}_{0}$   $U^{90+}$  (35% of intensity)

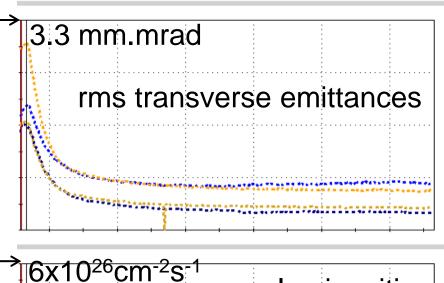

(had expected >50% based on GLOBAL)



#### Now have full 3D stochastic cooling for heavy ions



M. Brennan, M. Blaskiewicz, F. Severino, PRL 100 174803 (2008); PRSTAB, PAC, EPAC




#### **U-U store – new mode in 2012**

#### — All beam loss though luminosity (burn-off)!

cross sections [b]:

|      | Au-Au | U-U |
|------|-------|-----|
| BFPP | 117   | 329 |
| EMD  | 99    | 160 |



05:00

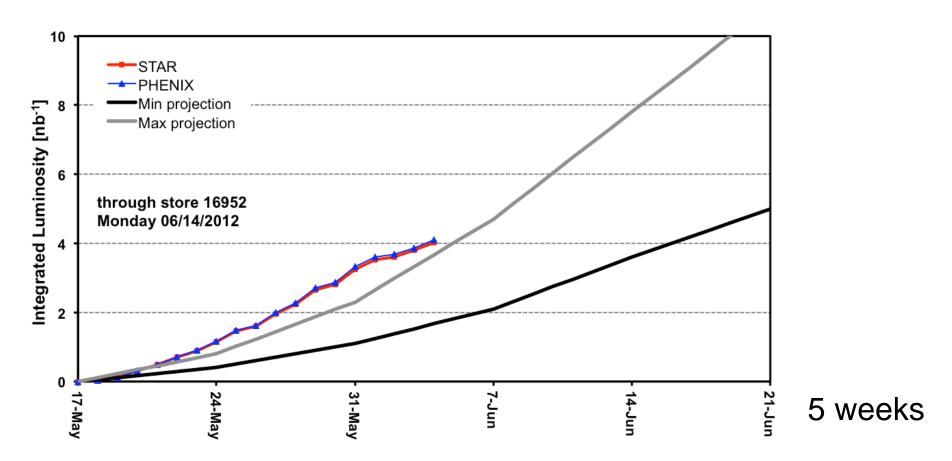
06:00

07:00

08:00

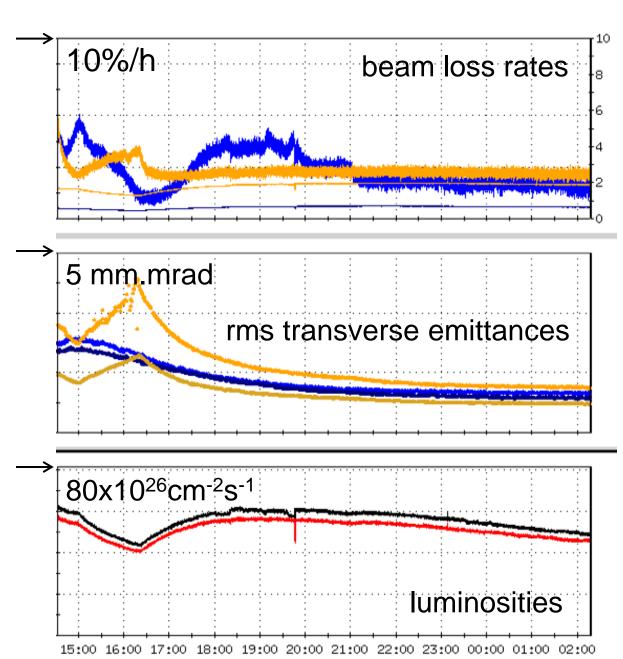
09:00

10:00


**luminosities** 

3D stochastic cooling leads to new feature in hadron collider:

$$L_{\text{max}} > L_{\text{initia}}$$


#### Run-12 – Copper-gold 100 GeV/nucleon (still running)

Run Coordinator: Y. Luo



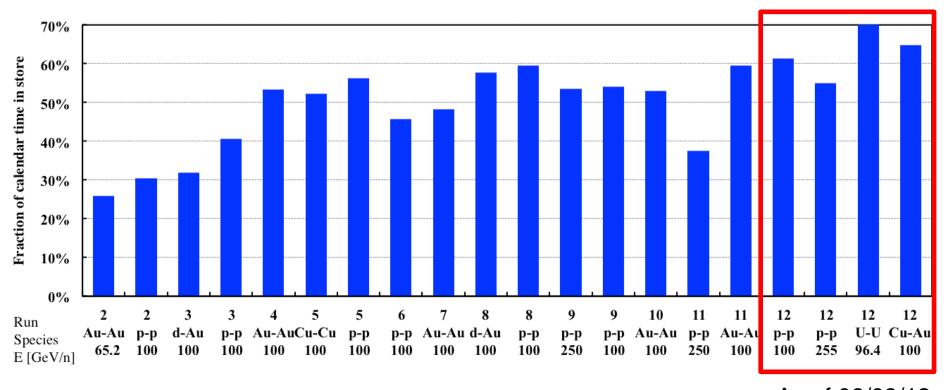
New: first Cu-Au operation in a collider; used <u>standard lattice to increase</u> <u>off-momentum dynamic aperture</u>; <u>first use of Blue and Yellow horizontal stochastic cooling (resulting in 3D cooling in both rings)</u>

#### Cu-Au store – new mode in 2012



## Cu and Au have different

- intrabeam scattering growth rates ( $\sim Z^4 N_b / A^2$ )  $r_{IBS,Au} \approx 2x r_{IBS,Cu}$ 


- cooling rates ( $\sim 1/N_b$ )  $r_{SC,Au} \approx 3x r_{SC,Cu}$ 

## Optimization of Cu/Au cooling rates:

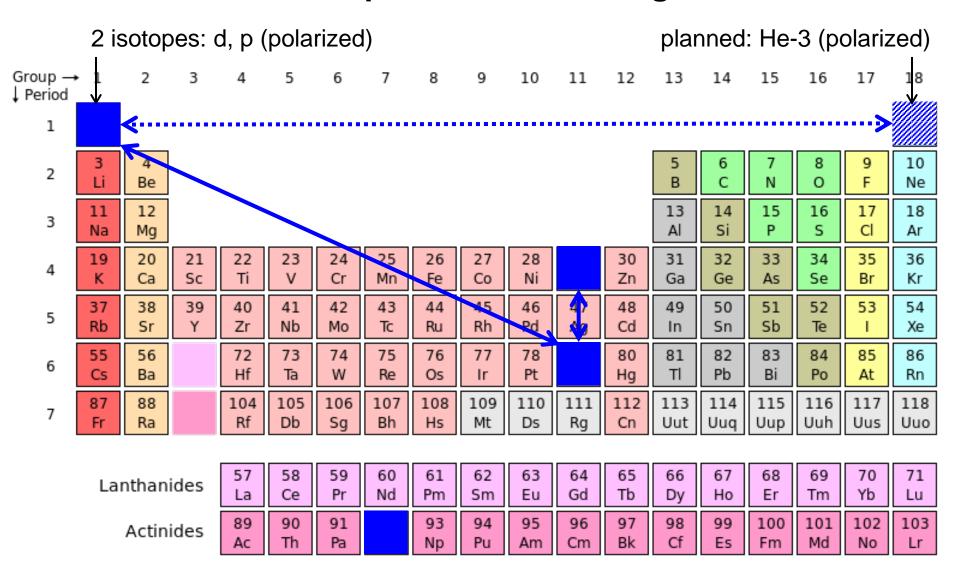
Overcooling of one beam creates large loss rate in other beam

14 h store length

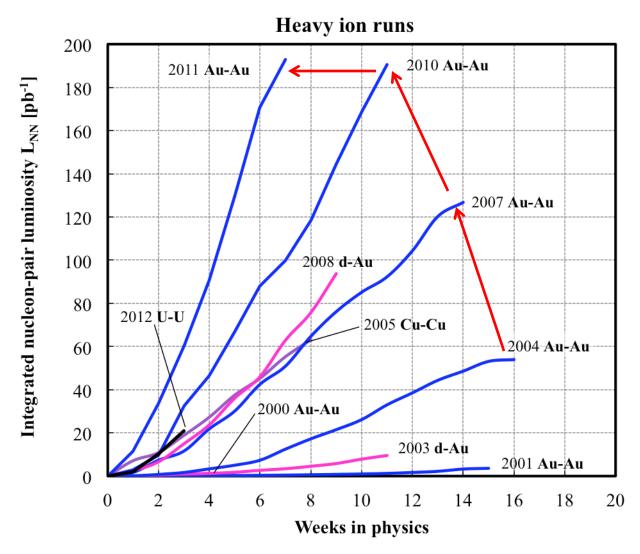
#### Time-in-store as fraction of calendar time



As of 06/03/12


- Run-12 with low failure rates in all systems
- Highest time-in-store ratios to date
   (even with increased APEX time during 255 GeV protons compared to Run-11)

#### RHIC ions – 6 species and 15 energies to date


```
238[ J92+_238[ J92+
                                       % first time in 2012, 3 weeks physics,
    complete
    96.4 GeV/nucleon
 197\Delta U^{79} - 197\Delta U^{79} +
    3.85, 4.6, 5.75, 9.8, 13.5, 19.5, 27.9, 31.2, 65.2, 100.0 GeV/nucleon
 ^{63}Cu<sup>29+-197</sup>Au<sup>79+</sup>^{19}o first time in 2012, 5 weeks, under way
    99.9/100.0 GeV/nucleon
 63Cu<sup>29+</sup>-63Cu<sup>29+</sup>
    11.2, 31.2, 100.0 GeV/nucleon
 d^{-197}\Delta u^{79+}
    100.7/100.0 GeV/nucleon
 p....-p....
    31.2, 100.2, 204.9, 249.9, 254.9 GeV
Can collide any species from protons (polarized) to uranium
```

with each other or with another species

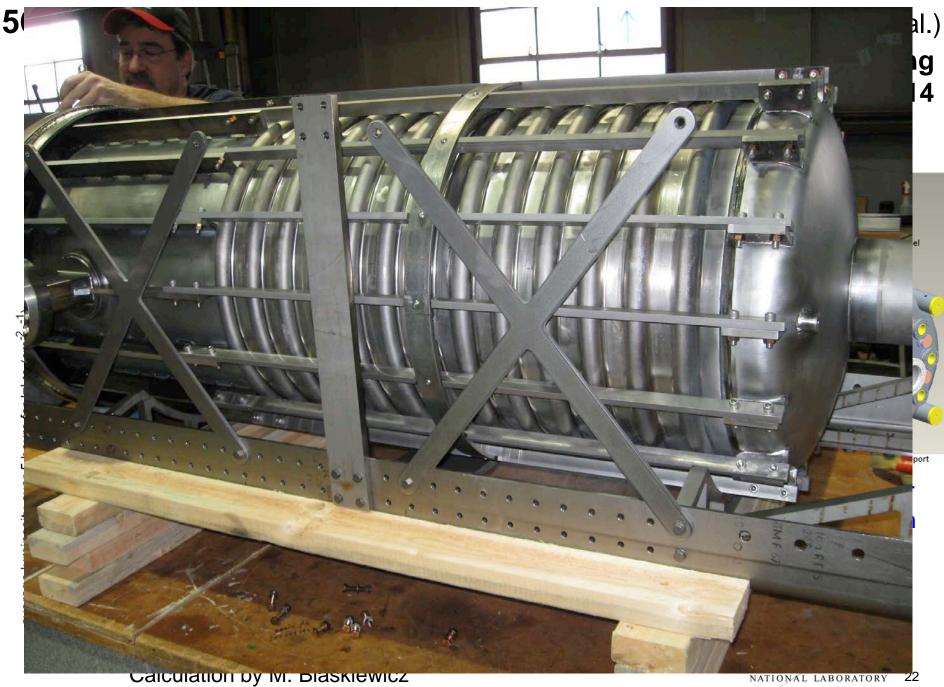
#### RHIC ions – 6 species and 15 energies to date



#### RHIC heavy ions – luminosity evolution to date



<L> = 15x design in 2011


About 2x increase in L<sub>int</sub>/week each

- Run-4 to Run-7
- Run-7 to Run10
- Run-10 to Run-11

Rate of progress will slow down – burn off 50% of Au beam in collisions already

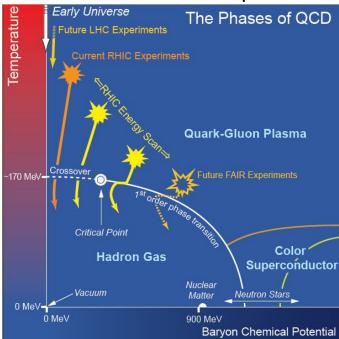
 $L_{NN} = L N_1 N_2$  (= luminosity for beam of nucleons, not ions)

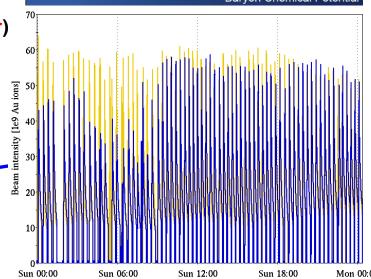
NATIONAL LABORATORY



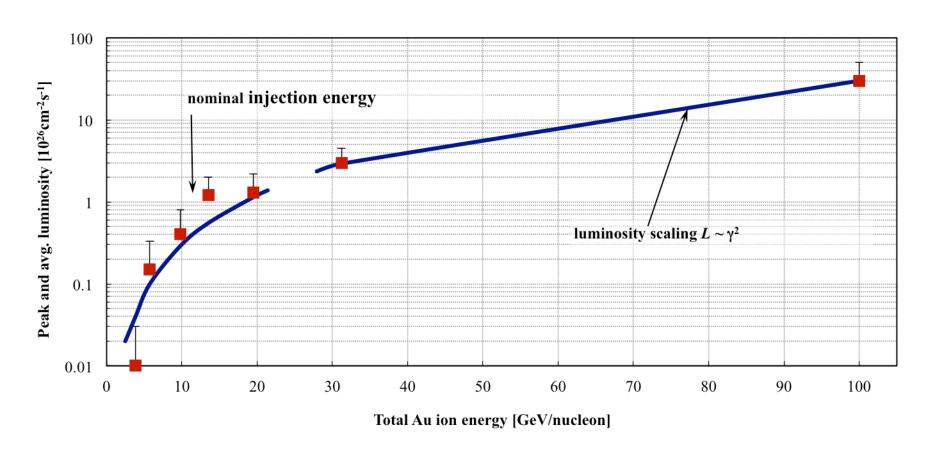
#### RHIC – Au-Au energy scan

Energy scan – extends <u>below nominal</u> <u>injection energy</u> in search of critical point in QCD phase diagram


Effects to contend with (#s for 20% nominal ( $B_p$ ):


- Large beam sizes (longitudinal and transverse) controlling losses becomes critical
- Large magnetic field errors ( $b_3 \sim 10$ ,  $b_5 \sim 6$  units from persistent currents in superconducting magnets)
- Intrabeam scattering (debunching ~min)
- Space charge (∆Q<sub>Laslett</sub> ~ 0.1 new regime for collider)
- Beam-beam (₺/IP ~ 0.003)
- Low event rates (~ 1 Hz)

Full energy injection allows for short stores


- At 38% of nominal injection (B<sub>P</sub>) -
- May operate at 20% of nominal injection (Bρ)

US NSAC report 2007





#### Au-Au energy scan to date



Peak and average luminosities fall faster than  $1/\gamma^2$  at lowest energies Need cooling at low energies to significantly increase luminosities

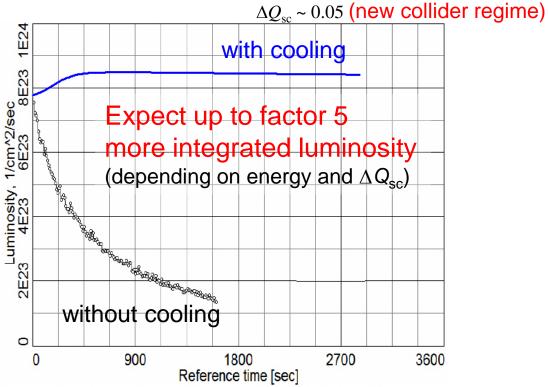
#### e-cooling for low energy collider operation (A. Fedotov et al.)

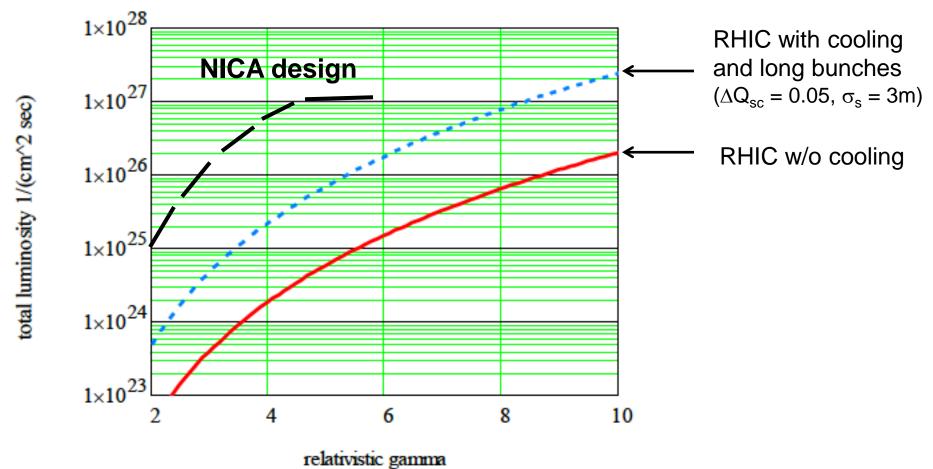
Fermilab Pelletron (cooled 8 GeV pbar for Tevatron use) usable – scheduled for decommissioning in 3/2012, so far have not requested transfer

Alternative option with e- beam from 112 MHz SRF gun

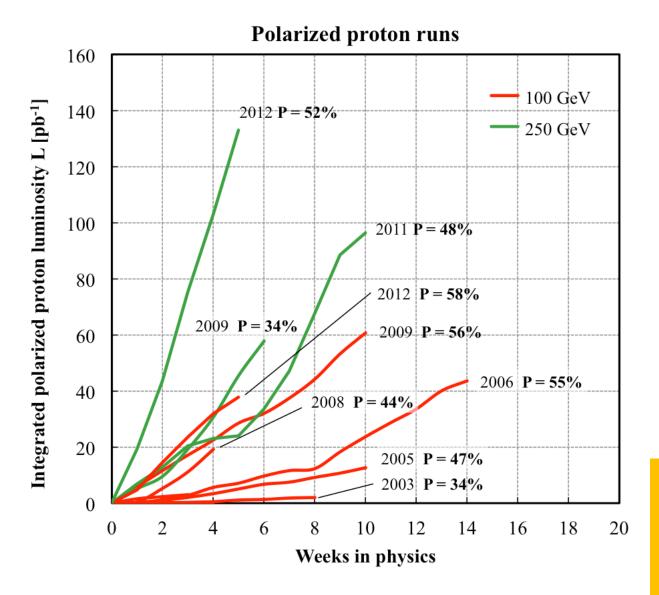
Cooling into space charge limit

Fermilab Pelletron





Figure 4. Simulation of luminosity with (blue line) and without (black dots) electron cooling at  $\gamma$ =2.7.

A. Fedotov, M. Blaskiewicz, BNL C-A/AP/449 (2012)




#### Low energy operation with cooling AND long bunches

Additional gain by operating with long bunches (at space charge limit)



#### RHIC polarized protons – luminosity and polarization



At 255 GeV in 2012

 $L_{\text{avg}} = 105 \times 10^{30} \text{cm}^{-2} \text{s}^{-1}$ 

 $P_{\text{avg}} = 52\%$ 

 $L_{\text{avg}}$  +15% relative to 2011  $P_{\text{avg}}$  +8% relative to 2011

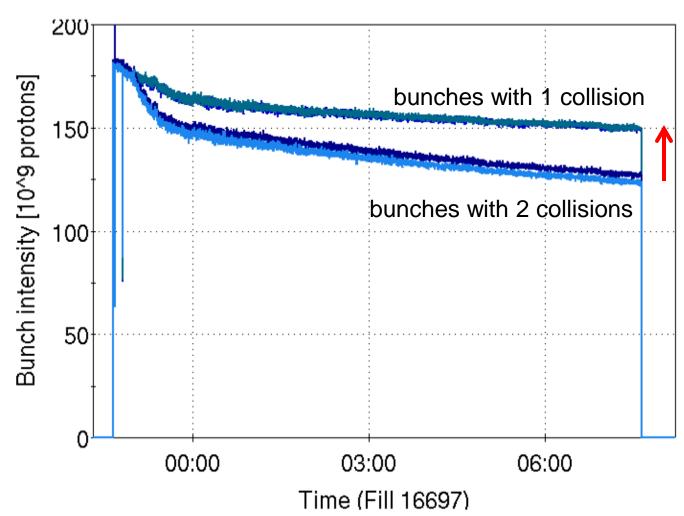
 $FOM = LP^2$  (single spin experiments)

 $FOM = LP^4$  (double spin experiments)

#### Optically Pumped Polarized H- source (OPPIS) - A. Zelenski

#### Upgraded OPPIS (2013)

#### Goals:




=> 10x intensity from ABS was accelerated through Linac

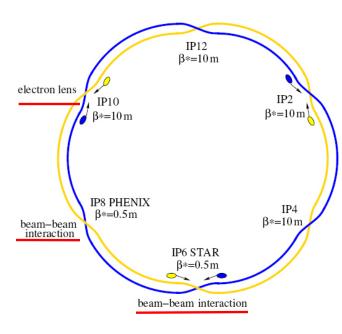
#### RHIC electron lenses

#### **Motivation**

#### Bunch intensity in 2012 polarized proton physics store



#### Goal:


Compensate for 1 of 2 beam-beam interactions with electron lenses

Then increase bunch intensity ⇒ up to 2× luminosity

Need new polarized proton source – under construction, A. Zelenski

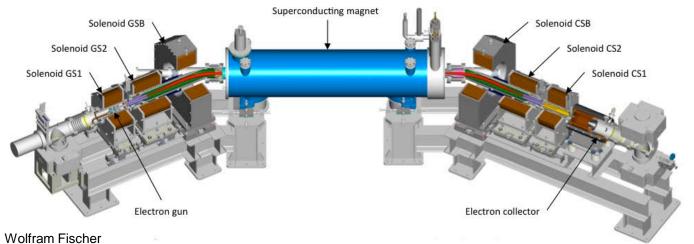
$$L \propto N_b^2$$

#### Electron lenses – partial head-on beam-beam compensation



#### Basic idea:

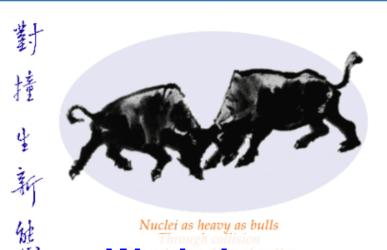
- 2 beam-beam collisions with positively charged beam
- Add collision with a negatively charged beam – with matched intensity and same amplitude dependence


#### **Compensation of nonlinear effects:**

- e-beam current and shapereduces tune spread
- $\Delta \psi_{x,y} = k\pi$  between p-p and p-e collision => reduces resonance driving terms






### Installation in 2012 Expect up to 2x more luminosity







#### Polarized <sup>3</sup>He – Workshop 28-30 September 2011



Workshop on Opportunities for polarized He-3 in RHIC and EIC -- sponsored by the RIKEN BNL Research Center

28-30 September 2011 Universe

US/Eastern timezone

Workshop program

• ³He<sup>∞</sup> source, ³He<sup>∞</sup> beams from EBIS

• <sup>3</sup>He<sup>222</sup> in Booster/AGS

Agenda

• <sup>3</sup>He ≈ in RHIC and EIC

info:

View my a ● Polarimetry (low and high energy)

Submit a new abstract

Dr. Aschenauer, Elke

C. Dr. Aschenauer, Elke

Timetable

Physics with <sup>3</sup>He<sup>222</sup> beams (theory and experiments)

Contribution List

Book of abstracts

Registration

Guest Information System (GIS)

If you have a current BNL Appointment and a valid BNL Guest Number or you have a pending Guest Registration (GR) Number, it is not necessary to complete

## Development of Polarized <sup>3</sup>He Ion Source for RHIC BNL-MIT Collaboration http://he3.xvm.mit.edu/

R. Milner, C. Epstein, MIT

Spec.: deliver <sup>3</sup>He<sup>++</sup> at ≈ 3 x 10<sup>12</sup> atoms/sec with 70% polarization

 Concept: polarize <sup>3</sup>He gas in glass cell using MEOP in fringe field of ≈ 5 Tesla EBIS solenoid and feed into EBIS

MEOP technology under development at MIT

- two Keopsys 10 Watt lasers operational
- data acquisition system operational
- 20 liters of <sup>3</sup>He gas ordered
- glass systems under construction
- Goal: to test principle of source using spare EBIS solenoid within the next year

Funded by DOE Office of Nuclear Physics R&D Program for Next Generation Nuclear Physics Accelerator Facilities



#### Polarized <sup>3</sup>He in RHIC – plan under development

- Polarized <sup>3</sup>He source developed at MIT (R. Milner)
- Polarized <sup>3</sup>He beams from EBIS
- Polarimeter after EBIS linac at 2 MeV/nucleon
- Un-polarized <sup>3</sup>He from EBIS:

Injection into Booster at low rigidity Acceleration in Booster, AGS, RHIC? Test carbon polarimeters Plan acceleration of unpolarized <sup>3</sup>He in Booster and AGS after RHIC Run ends

- Acceleration of polarized <sup>3</sup>He in Booster and transfer to AGS
   Vertical tune in Booster < 4.19 !!</p>
- Measure polarization at AGS injection energy, no depolarization?
- Accelerate <sup>3</sup>He in AGS and measure polarization on ramp and extraction
- Calibrate A<sub>N</sub> of carbon polarimeter at extraction energy with up/down ramp?
- Transfer to RHIC and calibrate carbon polarimeter in RHIC (which ring?)
- Absolute polarization measurement at RHIC injection with pol. <sup>3</sup>He jet/cell
- Accelerate in RHIC and measure polarization on ramp and at store energy
   May need 4 more snakes in Blue ring
- Calibrate A<sub>N</sub> of carbon polarimeter at store energy with up/down ramp
- Absolute polarization measurement at RHIC store with pol. <sup>3</sup>He jet/cell

#### Possible running modes Run-13 and Run-14 (BUPs)

#### Run-13

500 GeV p-p (STAR, PHENIX) ~10 weeks

• 200 GeV p-p (PHENIX) ~3-4 weeks

30 GeV p-p (PHENIX) ~1.5 weeks

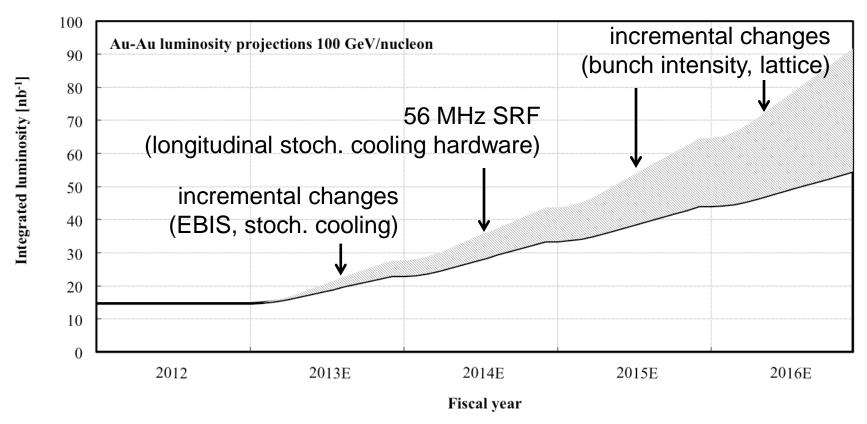
200 GeV Au-Au (STAR) ~ 4 weeks

#### Run-14

200 GeV Au-Au (STAR, PHENIX) ~6-8 weeks

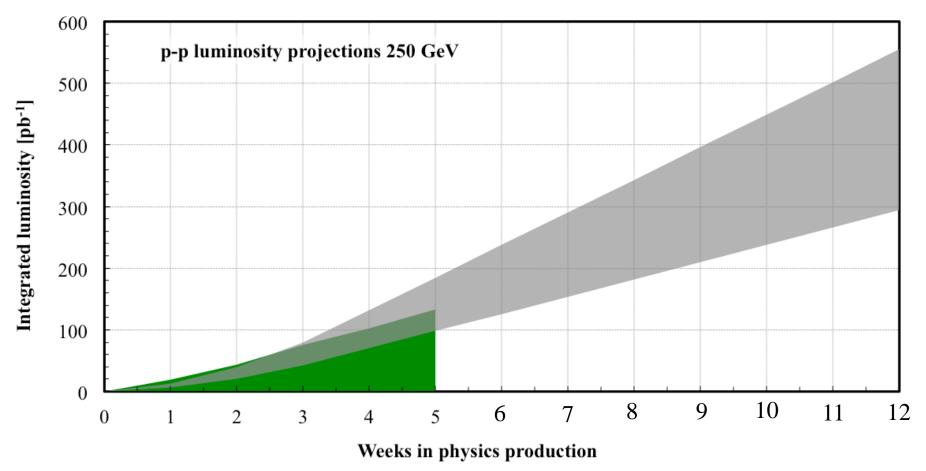
200 GeV p-p (STAR, PHENIX) ~4 weeks

• 200 GeV d-Au (PHENIX) ~6 weeks


#### **RHIC** luminosity and polarization goals

| parameter            | unit                                              | ınit achieved         |           | goals                              |     |                          |     |
|----------------------|---------------------------------------------------|-----------------------|-----------|------------------------------------|-----|--------------------------|-----|
| Au-Au operation      |                                                   | 2011                  |           | ≥ 2014                             |     |                          |     |
|                      |                                                   |                       |           | 3D stochastic cooling + 56 MHz SRF |     |                          |     |
| energy               | GeV/nucleon                                       | 100                   |           | 100                                |     |                          |     |
| no colliding bunches |                                                   | 111                   |           | 111                                |     |                          |     |
| bunch intensity      | 10 <sup>9</sup>                                   | 1.3                   |           | ≥ 1.1                              |     |                          |     |
| avg. luminosity      | 10 <sup>26</sup> cm <sup>-2</sup> s <sup>-1</sup> | 30                    |           | 40                                 |     |                          |     |
| p↑-p↑ operation      |                                                   | 2012                  |           | ≥ 2013                             |     | ≥ 2014 source + e-lenses |     |
| energy               | GeV                                               | 100                   | 255       | 100                                | 250 | 100                      | 250 |
| no colliding bunches |                                                   | <b>–</b> 107 <b>–</b> |           | <b>– 107 –</b>                     |     | <b>– 107</b> –           |     |
| bunch intensity      | 10 <sup>11</sup>                                  | 1.6                   | 1.7       | 1.6                                | 2.0 | 1.8                      | 2.5 |
| avg. luminosity      | 10 <sup>30</sup> cm <sup>-2</sup> s <sup>-1</sup> | 33                    | 105       | 30                                 | 150 | <b>60</b>                | 300 |
| avg. polarization*   | %                                                 | 58                    | <b>52</b> | <b>- 60 -</b>                      |     | <b>-70 -</b>             |     |

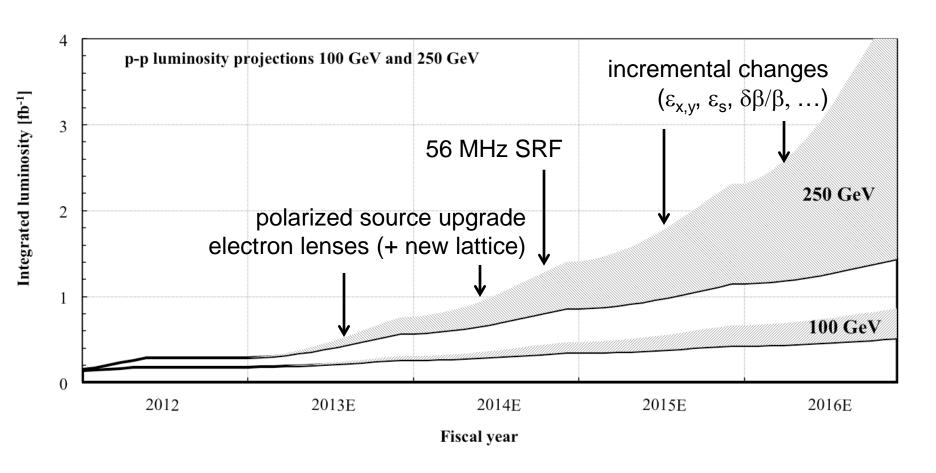
<sup>\*</sup>Intensity and time-averaged polarization as measured by the H-jet. Luminosity-averaged polarizations, relevant in single-spin colliding beam experiments, are higher. For example, for intensity-averaged P = 48% and  $R_x = R_y = 0.2$  (250 GeV, 2011), the luminosity-averaged polarization is P = 52%.


BROOKHAVEN
NATIONAL LABORATORY

#### **Projections projection for Au-Au**



[Note: assume 12 weeks of physics, 8 weeks of ramp-up, start at ¼ of max] [Note 2: last projections from 14 October 2011 still valid – close to peak performance goals for both polarized protons and heavy ions, will update after Run-12]


#### Polarized proton projection for Run-13



Polarization (as measured by H-jet): 50-60%

**New:** lattice (for e-lens, new phase shifter ps), partial or full source upgrade, e-lens (largely commissioning in Run-13)

#### **Projections for polarized protons**

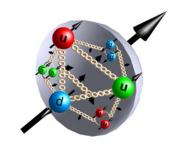


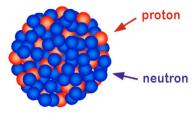
[Note1:assume 12 weeks of physics, 8 weeks of ramp-up, start at ¼ of max] [Note 2: last projections from 14 October 2011 still valid – close to peak performance goals for both polarized protons and heavy ions, will update after Run-12]

#### **RHIC** status and upgrades

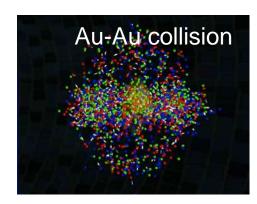
#### **Run-12**

- Polarized protons at √s = 200, 510 GeV new records for √s, L<sub>peak</sub>, L<sub>avg</sub>, P
- First U-U collisions at  $\sqrt{s_{NN}} = 193$ 3D stochastic cooling => 5x  $L_{avq}$  5x, only burn-off losses
- First Cu-Au collisions  $\sqrt{s_{NN}} = 200 \text{ GeV}$


#### Run-13 – upgrades mainly for polarized protons


- Polarized source upgrade (partial or full)
   10x intensity, +5% P
- Electron lenses
   requires new lattice, commissioning in Run-13

#### Run-14 – upgrades mainly for heavy ions


- 56 MHz SRF, +30-50% *L*
- Long. stochastic cooling hardware (pickup, kickers)

## Low-energy cooling possible for Au-Au up to $\sqrt{s_{NN}}$ = 20 GeV with Pelletron; up to ~10x L; $\geq$ 2017 – limited by funding, technical resources, personnel





**Uranium Nucleus** 

