The glue that binds us all:

Probing the nature of gluonic matter with an electron-ion collider

Raju Venugopalan Brookhaven National Laboratory

BNL PAC September 13th, 2006

Outline of Talk

- A brief introduction to QCD and the essential role of gluons
- What do we know about gluonic matter ?
- What do we wish to learn about glue ?
- How do we accomplish this ?

Fundamental particles and their interactions

QUARKS S=1/2		LEPTONS S=1/2		GAUGE BOSONS S=1
Q = -2/3	$\mathbf{Q}=-\mathbf{1/3}$	Q = -1	Q = 0	quanta
uuu	d d d	e	Ve	<i>g</i> ₁ <i>g</i> ₈
m=(1-4) 10 ⁻³	m=(5-8) 10 ⁻³	m=5.11 10 ⁻⁴	m<3 10 ⁻⁹	m< a few 10 ⁻³
ссс	SSS	μ	v_{μ}	γ
m=1.0-1.4	m=0.08-0.15	m=0.10566	m<1.9 10 ⁻⁴	m<2 10 ⁻²⁵
† † †	b b b	τ	ν _τ	W [±] , Z ⁰
m=174.3±5.1	m=4.0-4.5	m=1.7770	m<18.2 10 ⁻³	m_W =80.432 ±0.39,
				m _Z =91.1876 ±0.0021

All masses in GeV units

	Interaction	exchanged boson	relative strength	example
	Strong	Gluon (g)	1	
	Electromagnet.	Photon (y)	$\frac{1}{137}$	\sim
QED	Weak	w⁺, w ⁻, z∘	10-14	$\sum_{a}^{v_{a}} \cdots \sum_{d}^{w}$
	Gravitation	Graviton (G)?	10 ⁻⁴⁰	${\scriptstyle u \atop u} {\scriptstyle \sum} {\scriptstyle G \atop e} {\scriptstyle e \atop e}$

Quantum Chromodynamics (QCD) in the news...

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

The 2004 Nobel prize in physics

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

For the discovery of asymptotic freedom in QCDthe theory of the strong interaction...

In QCD, one has "anti-screening" because colored gluons can interact with each other...

The coupling between color charges gets weaker at high energies- or short distances...

Potential between static quark-anti-quark pair grows linearly at large distances provides intuitive picture of confinement

QCD explains 99.9% of observable mass of the universe!

(Quenched QCD explains mass spectrum to ~ 10%)

What do we know about gluonic matter ?

J	ΕT	2	7.8	8.9
J	ET	3	4.1	11.1

SERID-FISSLA PLOTID-NORPLOT PLOTR-0063

LOT EPOED HT 231648 ON 790524 LOT RECEIVED FROM F363LH TELSER NEALIST HOULE MS ON SYSTEM C QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

DEEPLY INELASTIC SCATTERING

The simplest way to study hadronic structure at short distances...

R. Hofstadter

Kinematic InvariantsS Q^2 $x_{
m Bj}$

$$x_{\rm Bj} \approx \frac{Q^2}{s}$$

DIS inclusive cross-section:

Rutherford cross-section

Friedman, Kendall, Taylor

Bj-scaling - apparent scale invariance of structure functions...

DIS in the Bjorken-Feynman picture:

Bjorken

Feynman

$$Q^2 \to \infty \; ; \; s \to \infty \; ; \; x_{\rm Bj} = {\rm fixed}$$

The Hadron at high energies

QCD-logarithmic corrections

"X"-QCD--RG evolution

$$\int_0^1 \frac{dx}{x} \left(xq(x) - x\bar{q}(x) \right) = 3$$

of valence quar

$$\int_0^1 \frac{dx}{x} (xq(x) + x\bar{q}(x)) \to \infty$$
 # quarks...

THE HADRON AT HIGH ENERGIES

What do we wish to learn about glue ?

a) How do gluons determine the *structure of hadrons* and hadronic interactions at high energies ?

b) What is the nature of gluonic matter in nuclear media -how does it transform into hot and dense matter ?

c) What is the contribution of glue to the spin of the nucleon ?

Total cross-sections

Can these be understood as "universal" quasi-particle excitations of the vacuum ?

How are they modified in nuclei?

Gribov rules: relation between *diffractive* scattering off nucleons and *nuclear shadowing*

Extensive work on Regge phenomenology but limited understanding in QCD framework

DIS in the Regge-Gribov picture:

$$x_{\rm Bj} \to 0 \ ; \ s \to \infty \ ; \ Q^2 = \text{fixed}$$

More relevant for understanding multi-particle production and total cross-sections...

Viewing the hadron in the transverse plane at high energies...

Gluon radiation

Gluon radiation & recombination

Overlapping gluon clouds... at large impact parameters, interplay between perturbative (hard Pomeron) and non-perturbative (soft Pomeron) physics...

By studying the "t" dependence of diffractive final states, can we learn more about the transition regime ?

S-matrix: $S(x,r,b) \propto 1 - \int d^2 \Delta e^{-i\Delta \cdot b} \sqrt{\frac{d\sigma}{dt}}$ $\Delta^2 = -t$

Resolving the hadron...

Gluon density saturates at maximal field strength squared: $f = \frac{1}{\alpha_S}$ New scale: $Q_s(x, b)$ Hadron at high energies is a Color Glass Condensate

✓ Gluons are colored

- Random sources evolving on time scales much larger than natural time scales-very similar to spin glasses
- ✓ Bosons with large occupation $\frac{1}{\alpha_S}$
 - Typical momentum of gluons is Q_s

Golec-Biernat & Wusthoff's model

Parameters:

 $Q_0 = 1 \,\text{GeV}; \lambda = 0.3; x_0 = 3 \cdot 10^{-4}$

Geometrical scaling at HERA

(Golec-Biernat, Kwiecinski, Stasto)

Scaling seen for all x < 0.01 and $0.045 < Q^2 < 450 \,\mathrm{GeV}^2$

Diffractive Surprises

Approximate 10% of events are hard diffractive events!

III: Hard diffractive processes

30 % of eRHIC eA events may be hard diffractive events-Study sizes and distributions of Rapidity Gaps

Lego plots a la Bjorken and Khoze et al.

Such multi-gap events can also be studied in DIS Bj, hep-ph/9601363

Novel regime of QCD evolution at high energies

eA at eRHIC \approx same parton density as ep at LHC energies!

Virtual photon coherence length:

x_Bj << 0.01 : Photon coherence length exceeds nuclear size
 - study "universal" high parton density effects.

0.01 < x_Bj < 0.1: Intermediate length scale between R_p & R_A
 study medium dependence of final states
 hadronization in QCD media.

x_Bj >> 0.1: Photon localized to longitudinal size smaller than nucleon size-EMC and Fermi motion region

Cartoon of ratio of nuclear structure functions

Uncertainity in ratio of Ca to nucleon <u>gluon</u> distributions

Armesto

-Hirai,Kumano,Nagai, hep-ph/0404093

How do we accomplish what we wish to learn about the nature of glue ?

F_L is a positive definite quantity- more sensitive to higher twists than F_2 ?

- clarify comparision with leading twist NLO pQCD at low x and moderate Q^2

$$R_{A_1,A_2}(\beta,Q^2,x_{\mathcal{P}}) = \frac{F_{2,A_1}^{D(3)}(\beta,Q^2,x_{\mathcal{P}})}{F_{2,A_2}^{D(3)}(\beta,Q^2,x_{\mathcal{P}})}$$

R_{A1,A2} = 1 => Pomeron flux is A -independent = f(A1,A2) - universal form

Diffractive Vector Meson Production:

$$\frac{d\sigma}{dt}|_{t=0}(\gamma^*A \to VA) \propto \alpha_S^2 \left[G_A(x, Q^2)\right]$$

Very sensitive to small x glue!

Brodsky, Gunion, Mueller, Frankfurt, Strikman

"Generalized parton distributions"

"Deeply-virtual Compton scattering", exclusive proc.

 $u(x, \mathbf{b}_{\perp})$

How can we probe glue with a high luminosity lepton-ion collider ?

Precision inclusive measurements of structure functions
 -wide sweep from Protons to Uranium

$$F_2^A F_L^A F_{2,Diff.}^A F_{L,Diff.}^A$$

Direct (photon-gluon fusion) semi-inclusive and exclusive probes of final states

$$\gamma^* A \to \pi, K, \Lambda, \cdots X \; ; \; \gamma^* A \to J/\psi A$$

Generalized Parton Distributions (DVCS)
 $\gamma^* A
ightarrow \gamma A$

Multiplicity fluctuations and correlations

New insights into old puzzles of the Regge-Gribov limit of QCD:

Great progress in understanding gluonic quasi-particle excitations of the vacuum

- Gluons exist. They provide much of the observable mass of the universe.
- In hadrons at high energies, they exist as ``wee" excitations of the vacuum- they are numerous and have remarkable collective interactions- Color Glass Condensate
- They control the properties of much of high energy scattering and produce a hot and dense Quark Gluon Plasma in heavy ion collisions

They contribute significantly to the spin of the proton

Very little is known about glue -- especially in nuclei .

A high energy, high luminosity, electron-ion collider is ideally suited to explore this *terra incognita*

Extra Slides

Principal physics goals of eRHIC

Extend DIS Paradigm for <u>quantitative</u> QCD studies in largely ``terra incognita" small x-large Q^2 regime

Three pronged approach

- High luminosity (~100 times HERA) unpolarized e-p scattering
- Polarized e-pol. P highest energies and collider mode for the first time
- First eA collider detailed map of QCD in nuclear media & very high parton densities.

F_L is a positive definite quantity- more sensitive to higher twists than F_2 ?

- clarify comparision with leading twist NLO pQCD at low x and moderate Q^2

$$R_{A_1,A_2}(\beta,Q^2,x_{\mathcal{P}}) = \frac{F_{2,A_1}^{D(3)}(\beta,Q^2,x_{\mathcal{P}})}{F_{2,A_2}^{D(3)}(\beta,Q^2,x_{\mathcal{P}})}$$

R_{A1,A2} = 1 => Pomeron flux is A -independent = f(A1,A2) - universal form

Diffractive Vector Meson Production:

$$\frac{d\sigma}{dt}|_{t=0}(\gamma^*A \to VA) \propto \alpha_S^2 \left[G_A(x,Q^2)\right]^2$$

Very sensitive to small x glue!

Brodsky, Gunion, Mueller, Frankfurt, Strikman

Comparison with Data

FS model with/without saturation and **IIM CGC model** hep-ph/0411337.

Comparison with Data

Exclusive J/Psi production: Kowalski-Teaney

Complementary physics of pA & eA at RHIC

- Both p/D-A & eA can probe small x region-important to test universal aspects of new physics.
- > eA due to independent "lever arms" in x and Q^2 well equipped for precision measurements. Much harder with pA
 - A & pA have important qualitative differences for hard diffractive processes. May be 30-40% of cross-section in eA!

II: Extracting gluon distributions in pA relative to eA

Direct photons

Open charm and a compressor this picture.

 J/ψ

Drell-Yan

As many channels...but more convolutions, kinematic constraints-limit precision and range.

Direct photons: promising-need wide coverage to go to small x-need simulations at forward rapidity...kt issues to be resolved .

STRONG HINTS FROM RHIC OF NEW PHYSICS

- a) Phenomenon was predicted in CGC scenario,
- b) Phenomenon well within EIC kinematic range

Novel regime of QCD at high energies

