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Study of QCD matter at RHIC and LHC

New phase of matter, QGP, is
discovered at RHIC and is
confirmed at LHC

e QGP at LHC should be ~30%
higher temperature than RHIC

g e QGP is characterized by
‘_-‘. f;'i"fQ‘ua‘rk Gllth — Near perfect fluidity
e BV p| — Strong energy loss of parton
y a.sma e Thisis the only “Phase transition”

of quantum field realized at
laboratory

e [tis our Scientific Obligation to
quantify the property of QGP.

Baryon D'ensity !JB * Quantitative study of QGP
property is underway at RHIC and
LHC
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Probing QGP with Hard Probes

Jet/High pt particle
—>Energy loss

v- jet, y-hadron

Thermal radiation - Energy loss

—>Temperature \ I ’

e et Heavy Quark
B ‘ - Energy loss

Low mass dilepton / \ Quarkonia

- Chiral restoration ~Debye screening

—>recombination

e Systematic study with different condition (T, u) with various probe is required
to quantitatively understand properties of QGP

e Both RHIC and LHC is needed to provide sufficient leverage in conditions and
dynamic range of hard probes (p,, mass, etc).

 RHIC, being flexible and dedicated machine, is essential for study of QGP
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Thermal photons at RHIC and LHC

PHENIX PRC81, 034911 (2010)
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e Strong enhancement of direct
photons at low p; at RHIC.

e Consistent with thermal radiation
with initial temperature of 300-600
MeV
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e Recently large enhancement of
direct photons at LHC reported,
consistent with higher initial
temperature at LHC

RHIC measurement has a factor
of 2 to 3 better precision



Low mass dilepton enhancement

PHENIX PRC81, 034911 (2010)
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Strong enhancement ot low mass dilepton seen by PHENIX
STAR reported similar measurement at QM2012
Related to chiral symmetry restoration (modified p)

Unique measurement at RHIC
— LM is one of the main physics goals of ALICE upgrade after 2018



J/w measurements at RHIC and LHC

PHENIX PRL98,232301(2007),PRC84,054912 (2011)
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e Strong suppression of J/y at RHIC
seen by PHENIX

e Forward J/y more suppressed than
mid-rapidity, challenging theory
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J/y at LHC is less suppressed than
RHIC in both mid- and forward
rapidity

In forward rapidity, high p; J/y is
more suppressed

These features consistent with large

contribution from re-generation of
J/y viacc2 J/y



J/w in d+Au, Cu+Au, and low E at RHIC

PHENIX QM2012 preliminary

PHENIX PRL107,142301(2011)
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It is important to make systematic study
with various collision system and beam

energy

RHIC, being a very flexible and dedicated
machine with high luminosity, allows
systematic study of J/y suppression.’



Upsilon suppression at RHIC and LHC

STAR QM2012 preliminary CMS QM2012 preliminary
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e Superior data of Upsilon from LHC
 The suppression pattern consistent with Binding energy.

e Similar data can be achieved at RHIC with sPHENIX upgrade
and MTD upgrade of STAR



Heavy quark suppression and flow: Discovery

PHENIX PRL98,172301 (2007)

PRC84,044905(2011)
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* Single electrons from
heavy quark decay are
suppressed and flow.

* Highest cited RHIC paper
after 2006, ~400 cites

e Before the data, it was
believed that suppression
is small for heavy quark

 The data provide mass
dependence of the
interaction of quark with
the QGP medium

e Charm and bottom were
not separated in these
measurement

- Need of Silicon trackers



Charm Suppression at RHIC and LHC

STAR QMZOlZ preliminary ALICE QM2012 preliminary
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* Heavy quark is hot topic. Many presentations in QM2012 from RHIC/LHC
e Strong charm suppression and flow in QGP are confirmed at LHC

e RHIC and LHC measurements are complementary

e Atlow py, Ry(D @RHIC) > R,,(D @ LHC).

e RHIC measurement covers low pT where QGP properties are concentrated
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Precise Heavy quark measurement with
silicon tracker upgrades at RHIC

PHENIX VTX + FVTX STAR HFT
\ ' ' SSD at r=22cm -
PIXEL at r=2.5cm and r=8cm
Vei/ == ] IST at r=14cm
e VTX (DOE $4.7M + RIKEN(~$4-5M)) e HFT (DOE S16M)
— Completed under budget in 2010 — Construction well underway

— Taking data since RUN11
— First results in QM2012
e FVTX (DOE $4.9M)
— Completed in 2011
— Started taking data in RUN12

— Engineering run with partial
installation in RUN13

— Start taking data with full
detector in RUN14
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Bottom measurements at RHIC and LHC

PHENIX QM2012 preliminary CMS QV2012 prellmlnary
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e Suppression of bottom by factor of ~2 seen both at RHIC and LHC

* These measurements are possible only with silicon trackers

* RHIC data covers low p; region where QGP effects are concentrated

e RHIC results show R,,(b)<R,,(c), doesn’t follow simple mass hierarchy
e This is a main physics topic in the coming years. More data are coming



Energy loss at RHIC and LHC

PHENIX arXiv:1208.2254

ALICE PLB696,301(2011)
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— Hard probes see difference in medium property at RHIC and LHC
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Direct measurements of Jets at LHC

CMS QM2012 ATLAS QM2012 CMS QM2012
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e LHC demonstrated that direct jet measurement in heavy ion
collision is possible.

e Rich data on reconstructed jets at LHC from ATLAS and CMS
— R v, Jet-Jet, y-Jet, Z/W-jet, Jet fragmentation, etc
e Similar measurement at RHIC requires a new capability



Why measure jets at RHIC

 The textbook on the Quark-Gluon plasma will be
incomplete without

a fundamental explanation for how the perfect fluid
emerges at strong coupling near T_ from an
asymptotically free theory of quarks and gluons

e Jet measurements at RHIC are essential to answer
this question

— Probe QGP near 1-2 T_ where the coupling is the
strongest

— Cover lower p; range of parton where QGP effects are
concentrated

e Measurements of jets only at LHC leave this
guestion with an incomplete answer.

15



The theoretical bridgework needed to connect measurement to
the interesting and unknown medium properties of deconfined

color charges is under active construction by many theorists :
Collaboration
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Larger jet asymmetry expected at RHIC than LHC and can be measured at RHIC



sPHENIX: jet detector at RHIC

HCAL OUTER

E i HCAL INNER

— EMCAL

SOLENOQOID

e Proposal submitted to BNL (~¥S25M) for sPHENIX July 1, 2012
e Details available at http://arxiv.org/abs/arXiv:1207.6378
e BNL internal review scheduled on October 5-6, 2012



The sPHENIX concept

Design a major upgrade to PHENIX to address
fundamental questions about the nature of
the strongly coupled QGP near T_ at RHIC

e Emphasizes jet physics observables with calorimetry initially
* Provides a solid platform for future upgrades and enhancements

 Takes advantage of the luminosity improvements due to stochastic
cooling and the wide range of species and energies available at
RHIC

 Designed around new technologies that enable a more compact
detector, and reuses as much of the PHENIX infrastructure as
possible, both helping to keep costs down



Jet rates at RHIC

Even at present RHIC
luminosity, we would have

10° jets(p>30 GeV)/year
in 0-20% central Au+Au

80 % of them are di-jet in
SPHENIX acceptance
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Fake jets

e Using 750M minimum bias

HIJING events
e S/B ratio of true jets

becomes greater than 1

for p; > 20 GeV/c

e Details published on
August 10 as

Hanks et al.,

PRC86,024908 (2012)
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sPHENIX upgrade path

HCAL OUTER

HCAL INNER
EMCAL
SOLENOID

ADDITIONAL
TRACKING

VTX

PRESHOWER ]

o Additional Tracking = heavy quark jets, modification of jets
* Preshower =2 y-jet, upsilon
Strong interest from Japan to add these additional subsystems



International interest in hard probe

measurements at RHIC
Original PHENIX detector

EMCal: Russia, Germany pi0, direct photon, W
RICH: Japan e, J/y, ee pair

Muon arm: Japan, France, Korea muon, J/Psi

PHENIX upgrades (completed)

Muon trigger: Japan W

VTX: Japan heavy quark

STAR upgrades (completed)

Barrel EMCal: Russia e, J/y, pi0

FMS: Croatia, Russia forward piO

TOF: China e, ee pair

SPHENIX (upgrade)

additional tracker: Japan heavy quark, jet fragmentation
additional preshower: Japan Upsilon, direct photon, pi0
STAR upgrades

HFT: China, France heavy quark

MTD: China, India Upsilon
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Baryon Density

Summary

Hard Probes (EM radiation,
Quarkonia, Heavy Quarks, and Jets)
are important for quantitative
study of QGP propeties

Both RHIC and LHC are needed to
guantitatively understand the
property of QGP

In coming years RHIC
measurements with Hard probes,
in particular Heavy Quark and Low
P; EM probes are competitive with
and complementary to LHC

SPHENIX upgrade will provide good
jet measurement capability to RHIC.
This is complementary to LHC and
essential for further study of
properties of QGP
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