SAXS and collapse in protein folding

Prof. Tobin Sosnick
Univ. of Chicago

with Jaby Jacob, Bryan Krantz, & Shane Dothager

And P. Thiyagarajan (ANL)

NIH and Packard Foundation for their generous support.
Protein folding

1D Sequence

Unique 3D Structure

Vast conformational search over in milliseconds!

local structure

long-range structure
How to reduce the Conformational Search?

Solve problem locally (e.g. Diffusion-collision model)

Early Collapse (e.g. most simulations)

Knowledge of when collapse occurs delineates folding models.
Measure dimensions at early folding stages using SAXS BioCat beam-line, Advanced Photon Source, Argonne National Lab

\[I(Q) = I_0 e^{-Q^2 R_g^2 / 3} \]

1/width \(\propto R_g\)
Does the polypeptide collapse upon denaturant dilution?

\[R_g \approx 26 \text{ Å} \]

High denaturant

\[\sim 2 \text{ msec} \]

Dilute Denaturant

or

\[26 \text{ Å} \]

\[<20 \text{ Å} \]?

Fold to completion

(takes 10+ msec)

Experimental strategy:

Measure \(I(Q) \) for 0.4 s during continuous-flow period where protein has folded for \(\sim 2 \text{ msec} \).
Ubiquitin in 1.5 M guanidine hydrochloride

- Sample concentration: 2 mg/ml
- Exposure time: 360 msec
- Number of exposures: 5 repeats for sample and buffer
Guinier plots of refolding and refolded Ubiquitin

Right after denaturant dilution (~2 msec)

After folding has completed (10+ msec)
Ubiquitin:

- Size after denaturant dilution
- Size after equilibration

Ubiquitin (& ctAcp): Negligible collapse upon dilution of denaturant!
Chemically denatured Proteins:
R\textsubscript{g} scales with length the same as a self-avoiding random walk

\[R\textsubscript{g} = 2.1 \ N^{0.585} \]

Unfolded Ub & ctAcp fall on this line even under aqueous conditions
(Ub: 26 versus 26.5 and ctAcp: 31 versus 30.7Å)
Polypeptides can behave like random coils under aqueous conditions

No denaturant or Temperature dependence for R_g

Equilibrium mode using non-folding polypeptide (RNase A with disulfide bonds broken)

Increased strength of protein-protein interactions at lower denaturant concentrations does not result in compaction (protein-water interactions are stronger).

Unfolded peptides are in the high temperature limit, where $T\Delta S_{\text{config}} \gg \Delta H$

(shrinking or expanding reduces number of conformations, i.e. entropy)
Why is water such a good solvent for polypeptides?

Hydrophobic interactions are strong (and will eventually drive folding to the native state for foldable sequences).

But…

1. Collapse is inhibited by the loss of conformational entropy:

\[\Omega_U \sim 10^{70} \text{ versus } \Omega_{\text{collapsed}} \sim 10^{20} \]

\[\Delta G \sim 70 \text{ kcal mol}^{-1} \]

2. **Removal of water from backbone** is very demanding – Must satisfy H-bonding requirements.

Each unsatisfied, buried amide and carbonyl costs several kcal mol\(^{-1}\)

Net stability of a protein < 10 kcal mol\(^{-1}\)

Therefore, non-specific hydrophobic collapse is unfavorable
Conclusions (for small proteins which fold cooperatively)

1. Early collapse is not an obligatory step in folding

2. Water is a good solvent for unfolded chains (prior to the major folding event).

3. Polypeptides can behave like random coils in water

 Exceptions occur for larger proteins, and those with disulfide bonds or prosthetic groups.
New area: RNA folding

Ribozyme P RNA

Specificity S-domain (~150 nt)

Catalytic C-domain (~255 nt)

Model by Westhof & Co.
JMB 1998
RNA Folding Rules are different
Many highly collapsed intermediates

C-domain
(255 nucleotide 80kD, 0.3 mg/ml)

\[R_g (\text{Å}) \]

\[\text{Mg}^{2+} (\text{mM}) \]

\[\text{U} \]

\[\text{I} \]

\[\text{N} \]

\[\text{U}_{\text{urea}} \]

\[\text{I}_{\text{eq}} \]

\[I_1^k \]

\[I_2^k \]

\[<10^{-3} \text{s} \]

\[5 \text{s} \]

\[30 \text{s} \]

\[<1 \text{s} \]

\[\text{N} \]

Relative compaction
0 94% 99% 100%

From Fang et al, Biochemistry, 2000
PNAS 2002

w/ Prof. Tao Pan
Univ. of Chicago

w/ Prof. Tao Pan
Univ. of Chicago
Technical Issues:

1. **Lower backgrounds**
 i) reliably access lower Q
 ii) less sample
 iii) less potential aggreg’n
 iv) less sensitive to background subtraction

2. Detectors that can do time-resolved studies at high fluxes
 Often CCD’s take seconds to read-out.
 Hence, no “on-the-fly” studies on the subsecond time-scale
 (current experiments were conducted in continuous-flow mode)

3. Reproducibility – invariably need to take multiple acquisitions:
 Detector issues, beam movement?
 (lower backgrounds would help)
“Many small, monomeric proteins fold with simple two-state kinetics and show wide variation in folding rates, from microseconds to seconds.”
From S. Jackson Folding & Design 1998

How do small single-domain proteins fold?

Two-state folding ≡ only the U and N states populate

All the energy and surface burial occur in the sole barrier crossing.

Precludes formation of early collapsed intermediate.
Lack of an early collapse phase places constraints on computer simulations.

The black illustrative trace is consistent with ensemble behavior, as the observable probe has either the value of the unfolded state or native state for the majority of the trajectory.

The blue and red trajectories are inconsistent with ensemble two-state folding behavior and the present SAXS data, as collapsed intermediates populate.
Burst phase CD signals:

The removal of denaturant subtly alters the distribution of backbone dihedral ϕ, ψ angles, most likely resulting in a shift from the polyproline II region to the helical region of the Ramachandran map.
Kratky and P(r) plots

Qualitatively demonstrates absence of any significant collapse from the random coil conformation in the “burst phase” upon dilution to low denaturant.
Same result with CtACP:
Negligible collapse upon dilution of denaturant

![Graph showing size changes with urea concentration](image)
Folding times are msec to seconds – maybe we’re not looking fast enough?

No

Energy conservation: \(\Delta G_u^{\dagger} - \Delta G_f^{\dagger} = \Delta G \)

Surface burial: \(m^0 = m_u + m_f \)

Assume there is an early stable intermediate

Underestimate Energy: \(\Delta G_u^{\dagger} - \Delta G_f^{\dagger} < \Delta G \)

And surface burial: \(m^0 > m_u + m_f \)

No missing energy, no missing surface burial - Therefore, the no early formation of a stable species which buries surface!
Two-state Ubiquitin folding

A) Chevron and amplitude data at 25 C, showing no rollover or missing amplitude.

B) Folding rates down to low urea (0.4 M Na2SO4, pH 5.0, 10 C) show no rollover because the 1 msec dead time and other precautions avoided factoring in the slower phases. These and other results at a variety of conditions obey the 2-state chevron criteria.
ctAcp satisfies the Chevron criteria for two-state folding.

All the ΔG and surface burial in the U\leftrightarrowN reaction are fully accounted for in the observed kinetic phase.

Inconsistent with the accumulation of an early intermediate.
Time-resolved small-angle X-ray scattering studies are uniquely capable of measuring the collapse of the entire protein during the refolding process. We have measured the dimensions of two proteins within milliseconds of denaturant dilution using synchrotron-based, stopped-flow SAXS. Even upon a jump to strongly native conditions, neither ubiquitin nor common-type acylphosphatase contract prior to the major folding event. Thus, for these two denatured states, collapse is not energetically downhill processes even under aqueous, low-denaturant conditions. In addition, water appears to be as good a solvent as that with high concentrations of denaturant, when considering the over-all dimensions of the denatured state. Experimental considerations of conducting such experiments will be discussed.
Demonstrating 2-state behavior: Chevron Analysis

\[K = \frac{[U]}{[N]} = \frac{k_u}{k_f} \]

\[\Delta G_U = -RT \ln k_u \]
\[\Delta G_f = -RT \ln k_f \]

U \rightleftharpoons \frac{k_f}{k_u} \rightarrow N

Agreement between equil. and kinetics implies 2-state model is adequate:

Energy: \(K = \frac{k_f}{k_u} \)

\(i.e. \Delta G_{\text{kin}} = \Delta G_u - \Delta G_f = \Delta G_{\text{eq}} \)

Surface burial: \(m^o_{\text{kin}} = m_u + m_f = m^o_{\text{kin}} \)

All the \(\Delta G \) and surface burial is fully accounted for in the observed kinetic phase.

\[\therefore \] no early stable intermediates – 2-state folding!

\[\Delta G_{\text{Den}} = \Delta G(0) - m^o \cdot [\text{Den}] \]