The only official copy of this document is the one online in the SharePoint Document Center. Before using a printed copy, verify that it is current by checking the printed document’s version history log (p. ii) with that of the online version.
The only official copy of this document is the one online in the SharePoint Document Center. Before using a printed copy, verify that it is current by checking the printed document’s version history log (p. ii) with that of the online version.

National Synchrotron Light Source II, Brookhaven National Laboratory

Doc No. PS-C-XFD-PRC-065 Author: M. Benmerrouche Effective Date: 21Jun2016 Version 1

Title: Beamline ISR (04-ID) Radiation Survey Plan

VERSION HISTORY LOG

<table>
<thead>
<tr>
<th>VERSION</th>
<th>DESCRIPTION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>First Issue.</td>
<td>21Jun2016</td>
</tr>
</tbody>
</table>

ACRONYMS

BTS Booster to Storage Ring mrem/hr Millirem per hour
DCM Double Crystal Monochromator NSLS-II National Synchrotron Light Source II
DHRM Double Harmonic Rejection Mirror PBS Pink Beam Stop
ESH Environment, Safety and Health PSD Photon Science Division
FE Front End PSH Photon Shutter
FOE First Optical Enclosure RCT Radiological Control Technician
GB Gas Bremsstrahlung SAF Safety Approval Form
HFM Horizontal Focusing Mirror SBMS Standards Based Management System
ID Insertion Device SOE Second Optical Enclosure
ISR In-situ and Resonant X-ray Studies SSA Secondary Source Aperture
IVU In-vacuum Undulator VFM Vertical Focusing Mirror
LOTO Lockout/Tagout WBS White Beam Stop
mrad Millirad
Beamline ISR (04-ID, IVU 23)

Comprehensive Commissioning Radiation Survey Plan

Date: __________

Before Survey Begins:

- Authorization/approval from the NSLS-II Director to initiate commissioning of the beamline has been received.
- A Beamline System Readiness Checklist has been completed in accordance with PS-C-XFD-PRC-003, *Enabling Beamlines for Operations*.
- The area(s) around the beamline are posted in accordance with SBMS Program Description: *Radiological Control Manual*.
- All shutters closed.
- Front end slits wide open (near maximum extent range).

 Note: If FE slits cannot be wide open, record the FE slits parameter here: ______________________
- ID gap closed to minimum gap after first step of GB radiation survey.

 Note: If ID cannot be closed to minimum gap, record the gap value here: ______________________
- All beamline slits fully open.
- Monochromator Bragg angle moved to the lower limit (~0 degree)
- All mirrors retracted out from beam.

During Survey:

- Authorized Beamline Staff ensure that photon beam is where it should be using the appropriate diagnostic tools.
- Authorized Beamline Staff ensure that the FE Shutter remains open.
- If at any point during performance of this plan a radiation dose rate of 5 mrem/hr or higher is identified, the radiation survey shall be terminated and the cause investigated, and any hazards shall be mitigated before continuing.
- The step sequences of this procedure can be changed.
- This document, with the filled information from the measurements, will act as the "beamline radiation survey interim report," which shall be submitted to the PSD Director and the ESH Manager for review after the survey.
- Minor deviations from the procedure are allowed in the field; however, the discrepancy shall be documented in this procedure and submitted to the PSD Director and the ESH Manager for review after the survey.
- During surveys performed in top-off mode, top-off will be adjusted for more frequent injections to keep the stored beam current within the allowable specifications.

Warning: Execution of this Comprehensive Commissioning Radiation Survey Plan, along with the evaluation of the data collected, may only be used as a basis by the PSD Director and the ESH Manager to approve commissioning activities at an electron beam current of up to 3 times the electron beam current measured during this survey. Approval of commissioning of the beamline at a higher electron beam current requires re-execution of this Comprehensive Commissioning Radiation Survey Plan.

Initial Settings:
Electron Beam Current: __________ Injection Rate: __________ BTS Injection Efficiency: ________________

ID gap: ____________________ Straight Section Vacuum Condition: ________________________________

HFM settings: __________________

DCM settings: __________________

VFM settings: __________________

DHRM settings: __________________

Survey start date and time: __________________________

Authorized Beamline Staff & Radiological Control Technicians (RCTs):
__
__
__

Additional information if available: ____________________________

The following scenarios are covered:

I. **04 ID-A (FOE) integrity**: Beam on WBS, HFM, PBS, DCM, monochromatic beam on VFM and PSH.

II. **04 ID-B (SOE) and C/D integrity**: Monochromatic beam on Photon shutter, DHRM, beam stops, and target(s) (Al or Si).

Note: The transport pipe integrity check is included in this survey plan.

Survey Conditions:

HOLD POINT: Evaluate and ensure that all applicable controls listed in the Commissioning SAF are in place, including LOTO requirements for the beamline photon shutters (in accordance with PS-C-XFD-PRC-024, *Beamline Photon Shutter Centrally Controlled Lockout/Tagout Procedure*).

HOLD POINT: Before opening safety shutters in the front end, survey the upstream wall of the FOE to make sure no radiation comes through.

Note: Detailed diagrams of hutch A and B are included in Attachment A.
I. Check the integrity of FOE (04-ID-A), transport pipe, and Photon Shutter 1.

1. GB radiation survey: Gap open, FE slits wide open, GB on WBS, survey all walls and roof of the FOE (04-ID-A), and downstream pipe behind the downstream wall of FOE.

ID Gap: _______________________
Straight Section Vacuum Conditions: ______________
Radiation Survey Results: ______________
Additional information/comments:
__
__
__
__
__

Signature (ESH) ____________________ Signature (Beamline) ____________________
2. **GB radiation survey**: Gap open, FE slits wide open, *Insert HFM*, survey all walls and roof of the FOE (04-ID-A), and the downstream pipe behind the downstream wall of FOE. **Retract HFM**

ID Gap: ______________________

Straight Section Vacuum Conditions: ____________

Radiation Survey Results ________________

Additional information/comments:

__

__

__

__

__

__

Signature (ESH)________________________Signature (Beamline)________________________
3. **Close ID Gap, white beam on WBS**, survey all walls and roof of the FOE (04-ID-A), and downstream pipe behind downstream wall of FOE.

ID Gap:

Straight Section Vacuum Conditions:

Radiation Survey Results:

Additional information/comments:

__

__

__

__

__

Signature (ESH) ________________________ Signature (Beamline) _______________________
4. Close ID to minimum gap (6.1 mm), insert HFM at 0.15 degrees (2.62 mrad) incident angle, white beam on HFM survey all walls and roof of the FOE (04-ID-A), and downstream pipe behind downstream wall of FOE. Survey exit mono beam transport pipe downstream from 04-ID-B to verify the integrity of 04-ID-A PSH.

ID Gap: _______________________
Straight Section Vacuum Conditions: _______________
Radiation Survey Results ________________
Additional information/comments:
__
__
__
__
__

Signature (ESH) ___________________ Signature (Beamline) ___________________
5. **Set DCM Bragg angle to pass undulator harmonic (nominal values)**, survey all walls and roof of the FOE (04-ID-A), and downstream pipe behind downstream wall of FOE.

 DCM Bragg Angle:

 ID Gap:

 Straight Section Vacuum Conditions:

 Radiation Survey Results

 Additional information/comments:

 Signature (ESH)_________________________
 Signature (Beamline)_____________________
6. Insert VFM and set it to incident angle of 0.15 degrees (2.62 mrad), SOE Shutter open, survey all walls and roof of the FOE (04-ID-A), near Photon Shutter 1, and downstream pipe behind downstream wall of FOE and exit mono beam transport pipe to verify the integrity of 04-ID-A PSH.

Diagram: Sheilding and Shutter Layout

- **DCM Bragg Angle:** __________________________
- **ID Gap:** __________________________
- **Straight Section Vacuum Conditions:** __________________________
- **Radiation Survey Results:** __________________________
- **Additional information/comments:**

__
__
__
__
__
__

**Signature (ESH)________________________ **Signature (Beamline)________________________
II. Check the integrity of 04-ID-B (SOE) and transport pipe.

7. Open 04-ID-A Photon Shutter 1 to allow beam into 04-ID-B enclosure, survey all walls and roof of the SOE (04-ID-B) and upstream/downstream pipes, and exit mono beam transport pipe.

DCM Bragg Angle: ______________________
ID Gap: ______________________
Straight Section Vacuum Conditions: ______________________
Radiation Survey Results: ______________________
Additional information/comments:
__
__
__
__
__

Signature (ESH) ______________________ Signature (Beamline) ______________________
8. **Same as step 9 but insert DHRM into the beam**, survey all walls and roof of the SOE (04-ID-B) and upstream/downstream pipes. **Retract DHRM**

DCM Bragg Angle: ______________________

ID Gap: ______________________

Straight Section Vacuum Conditions: ______________

Radiation Survey Results: ______________

Additional information/comments:

__

__

__

__

__

Signature (ESH) __________________ Signature (Beamline) __________________
III. Check the integrity of 04-ID-C, delivery transport pipe and 04-ID-D

9. Open 04-ID-B Photon Shutter 2 to allow beam into 04-ID-C enclosure, insert sample target at sample location, survey all walls and roof of 04-ID-C, upstream pipes, and inside 04-ID-D.

DCM Bragg Angle: __________________________

ID Gap: __________________________

Straight Section Vacuum Conditions: ________________

Radiation Survey Results __________________________

Additional information/comments:

Signature (ESH) __________________________ Signature (Beamline) __________________________
10. Remove sample target in 04-ID-C to allow beam to strike movable beam stop on the downstream wall of 04-ID-C, survey all walls and roof of 04-ID-C, upstream pipes, and inside 04-ID-D.

DCM Bragg Angle:

ID Gap:

Straight Section Vacuum Conditions:

Radiation Survey Results

Additional information/comments:

__

__

__

__

__

Signature (ESH) _________________________ Signature (Beamline) _________________________
11. Open 04-ID-C movable beam stop to allow beam to strike beam stop on the downstream wall of 04-ID-D, survey all walls and roof of 04-ID-D.

DCM Bragg Angle: __________________________

ID Gap: __________________________

Straight Section Vacuum Conditions: __________

Radiation Survey Results ________________

Additional information/comments:
__
__
__
__

Signature (ESH) __________________________Signature (Beamline) __________________________
12. **Insert sample target in 04-ID-D at sample location**, survey all walls and roof of 04-ID-D.

DCM Bragg Angle:

ID Gap:

Straight Section Vacuum Conditions:

Radiation Survey Results

Additional information/comments:

__

__

__

Signature (ESH)____________________Signature (Beamline)________________

Survey end date and time:

Additional attachment, information or comments:

__

__

__

__
The only official copy of this document is the one online in the SharePoint Document Center. Before using a printed copy, verify that it is current by checking the printed document’s version history log (p. ii) with that of the online version.

National Synchrotron Light Source II, Brookhaven National Laboratory

Doc No. PS-C-XFD-PRC-065 Author: M. Benmerrouche Effective Date: 21Jun2016 Version 1

Title: Beanline ISR (04-ID) Radiation Survey Plan

Intentionally blank for 2-sided printing
Attachment A – Beamline Enclosure Diagram, 4-ID-A (FOE)
Attachment A – Beamline Enclosure Diagram, 4-ID-B (SOE)