Title
- Controls Infrastructure Group Leader
- ES&H Operations Manager
- Quality Assurance Engineer

Name
- Ruslan Kadyrov
- Lori Stiegler
- Joseph Zipper

Approval Date
- 09/16/2015

Serial No
<table>
<thead>
<tr>
<th>Serial No</th>
<th>Part No</th>
<th>Part Rev</th>
<th>ECN</th>
<th>Rev</th>
<th>ECN</th>
<th>Rev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beamline:</td>
<td>8-BM TES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Deviation & Waiver

<table>
<thead>
<tr>
<th>OP</th>
<th>Description</th>
<th>Name/Life #</th>
<th>Date</th>
<th>DR</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Follow the ES&H and Personal Protective Equipment Requirements for the area.</td>
<td>P. Kadyrov 25392</td>
<td>08/03/16</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Verify measuring and test equipment used for this procedure contains a valid calibration label in accordance with NSLS-II Calibration Procedure PS-QAP-0901, where applicable.</td>
<td>P. Kadyrov 25392</td>
<td>08/03/16</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>BEAMLINE INFORMATION - This step shall be performed by the cognizant EPS Engineer.</td>
<td>H. Xu 24048</td>
<td>08/05/16</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>INSTALLATION VERIFICATION</td>
<td>P. Kadyrov 25392</td>
<td>08/02/16</td>
<td></td>
</tr>
</tbody>
</table>

A) List the relevant drawing(s):

- LT-EL-BL-ET-EPS-2086-90

B) Verify the following items are acceptable:

- System layout configured per drawing(s)
- System Labeled / Tagged
50 SOFTWARE CONFIGURATION
A) Download PLC software to controller and verify it was accepted by the controller.

B) Record the software part number:
 Part No.: ET-EL-BL-ET-EPS-2086-70
 Rev. No.: A

60 ACCEPTANCE TESTING
A) List relevant testing procedure
 Procedure No.: PS-R-XFD-EPS-CHC-001
 Rev. No.: 1

B) Verify acceptable completion of test procedure

C) Attach test report to this traveler

65 WATER LEAK DETECTION SYSTEM TEST
Verify water leak detection system, as designed for this beamline, functions correctly.

70 Verify All Traveler Operations Complete

80 REVISION HISTORY (This step is informational and does not require signoff)

Rev - Description - Date
A First Release 8/27/2014
B OP#65 added 9/16/15
 Joe Delong removed as approver
 Ruslan Kadyrov added as approver
Beam Line: TES 8-BM

Test Date:

EPS Engineer: Huijuan Xu

BL Group Leader: Paul Northrup

Beam Line master spreadsheet:

Pre-test setup:

Connect PPS interface test box at beam line EPS/PPS interface connector.

The Beam Line Master Spreadsheet contains a comprehensive list of all EPS related signals. As this test plan is executed note the results in the “test results” column of this spreadsheet.

Test Set 1: Vacuum

Vacuum Section:

Starting conditions: pressure at or below acceptable limits, GVs open.

Simulate pressure rise (toward poor vacuum) by disabling the vacuum gauge controller channel. Ensure EPICS PVs enter proper alarm states, photon shutter closes¹ and vacuum section is isolated. Two local gate valves and one (or more, if it is required to isolate upstream section, e.g. section branching) upstream gate valve close. Record results for the following:

EPICS PV Alarm

EPS fault

Photon Shutter closes

GVx closes

¹ if the intensity of the beam in the section cannot cause damage to its valves, poor vacuum doesn’t have to cause shutter close
GVy close:

GVz closes

Attempt to open the front end shutter and gate valves through EPICS.

Photon shutter and gate valves cannot be opened through EPICS (1)

Enable vacuum gauge controller and ensure EPICS alarms clear. Open gate valves and photon shutter through EPICS.

Photon shutter and gate valves can be opened through EPICS (2)

<table>
<thead>
<tr>
<th>Gauge name:</th>
<th>EPS fault:</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF:08BMA-VA{Slit:1-CGG:1}</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>XF:08BMA-VA{Slit:1-TCG:1}</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>XF:08BMA-VA{Mono:1-CGG:1}</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>XF:08BMA-VA{Mono:1-TCG:1}</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>XF:08BMA-VA{Mir:FM1-CGG:1}</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>XF:08BMA-VA{Mir:FM1-TCG:1}</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XF:08BMA-VA{Msk:2-CGG:1}</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>XF:08BMA-VA{Msk:2-TCG:1}</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XF:08BMA-VA{BT:1-CGG:1}</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>XF:08BMA-VA{BT:1-TCG:1}</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XF:08BMAES-VA{BT:2-CGG:1}</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>XF:08BMAES-VA{BT:2-TCG:1}</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XF:08BMAES-VA{SSA:1-CGG:1}</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>XF:08BMAES-VA{SSA:1-TCG:1}</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XF:08BMAES-VA{Be:1-CGG:1}</td>
<td>✓</td>
<td>N/A</td>
<td>✓</td>
</tr>
<tr>
<td>XF:08BMAES-VA{Be:1-TCG:1}</td>
<td>✓</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

Simulate pressure rise (toward poor vacuum) by disabling the vacuum pump controller channel. Ensure EPICS PVs enter proper alarm states, photon shutter closes\(^2\) and vacuum section is isolated. Two local gate valves and one upstream (or more, if it is required to isolate upstream section, e.g. section branching) gate valve close. Record results for the following:

EPICS PV Alarm

EPS fault

Photon Shutter closes

\(^2\) if the intensity of the beam in the section cannot cause damage to its valves, poor vacuum doesn’t have to cause shutter close
GVx closes
GVy closes
GVz closes

Attempt to open the front end shutter and gate valves through EPICS.

Photon shutter and gate valves cannot be opened through EPICS (1)

Enable vacuum pump controller and ensure EPICS alarms clear. Open gate valves and photon shutter through EPICS.

Photon shutter and gate valves can be opened through EPICS (2)

Repeat for each vacuum section on beam line. For the sections adjacent to Front end and End Station, also simulate poor vacuum signal from remote systems.

<table>
<thead>
<tr>
<th>EPS fault:</th>
<th>Front end:</th>
<th>End station:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photon Shutter closes</td>
<td>✓</td>
<td>N/A</td>
</tr>
<tr>
<td>GVx closes</td>
<td>GV2</td>
<td>✓</td>
</tr>
<tr>
<td>G Vy closes</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>GVz closes</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Shutter and GV s cannot be opened</td>
<td>✓</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gauge name:</th>
<th>EPS fault:</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF:08BMA-VA{Slit:1-IP:1}</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>X F:08BMA-VA{A Fm1-IP:1}</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>X F:08BMA-VA{Ms k:2-IP:1}</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>X F:08BMA-VA{B T:1-IP:1}</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>X F:08BMA-VA{B T:2-IP:1}</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>X F:08BMA-VA{S S A:1-IP:1}</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Test Set 2: Water flow

Water flow Section:

Record initial flow through section with all valves fully open.

Slowly close supply valve and record the LOW and LOW LOW PV Alarm levels.

If the channel is associated with an EPS actionXFD-EPOS, also register the flow at which the EPS fault occurs. Ensure cable disconnection results in EPS action.

Repeat for each water circuit on beam line.

| Sensor name: XF:08BMA-OP{Mono:1}F-I | Nominal flow: N/A | LOW: 1.2 | LOLO: 1.0 | EPS: ✔ |

* Tested with test setup

Test Set 3: Thermal

For each temperature transducer ensure the temperature measurement reports expected value.

Attach an appropriate adaptor and transducer simulator to the temperature input of the EPS system (remote IO chassis or Armor Block). Raise the temperature above each of the HI and HIHI PV alarm limits and ensure the alarm is reported. If the transducer is associated with an EPS interlock, continue to raise the temperature until the EPS trip level is exceeded. Ensure the appropriate EPS mitigation process occurs. Ensure channel cable disconnection results in EPS action.

| Sensor name: XF:08BMA-OP{Mono:1}T-I | Temperature: 24.0°C | HI: 21 | HIHI: 22 | EPS: ✔ |
Test Set 4: EPS/PPS interface

For the primary Photon Shutter:

Front End: If FRONT END ENABLE STATUS and FOE SECURE and not USER INTERLOCK command the front end shutter to open.

Front end opens and FRONT END OPEN STATUS = OPEN:

Command the front end shutter to close.

Front end closes and FRONT END OPEN STATUS = CLOSED:

With the front end open force a user interlock.

Front end closes and FRONT END OPEN STATUS = CLOSED:

Attempt to open the front end shutter through EPICS while not all gate valves in white-beam region down to next secondary shutter are open.

Front end cannot be opened through EPICS:

For each secondary photon shutter:

If PHOTON SHUTTER x ENABLE STATUS = 1 (ABILITY TO OPEN) and ESEE x SECURE command the shutter to open.

Shutter opens and PHOTON SHUTTER x OPEN STATUS = OPEN

Command the shutter to close.

Shutter closes and PHOTON SHUTTER x OPEN STATUS = CLOSED

Attempt to open the shutter through EPICS while not all gate valves in white-beam region downstream the shutter are open.

Shutter cannot be opened through EPICS:
Beamline Equipment Protection System Test Checklist

Prepared by:

X

Barrett T. Clay
Document Preparer

Approved by:

X

Ruslan Kadiev
Controls Infrastructure Group Leader

X

Paul Northrup
Appropriate Beamline Group Leader