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Outline 

• Beamline Optical design   
–Optical scheme 

–  Imaging Monochromator Design and Specifications 

–  Micro-focusing Optics Design and Specifications 

–  Heat load considerations 
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HEX Beamline Layout 

Hutch A 

FOE 

Side branch 

mono. (ADXRD) 

 White-beam Branch 

(EDXD) 

Center Branch  white/mono 

(ADXRD focused beam) 

Center Branch 

(EDXD+ADXD+ 

Imaging+ SAXS) 

Optics hutch 

B 

 

C D E F 

Center branch optics and endstation F is in the scope 

Optics and endstations for white beam (D) and side (B) branches are not in current scope 

B and D hutches may be de-scoped if needed 
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HEX Optical Layout 
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Optics 

Imaging monochromator 

• Meridionally bent asymmetric crystals  

• Use small offset – 25 mm – compact and 

stable 

• Proven design used at NSLS, JEEP, 

Australian Light Source and BMIT  

 
 

 

 

  Side branch Center Branch White-beam Branch 

Monochromator One-bounce bent-Laue Sagittal focusing mono 
Imaging mono 

N/A 

Mirror Vertical-focusing Vertical-focusing N/A 

Mode Monochromatic White/Monochromatic White 
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Imaging Monochromator 

• High-energy x-rays are especially suitable for imaging batteries, 
engineering materials and earth science samples 

• Simulations show that it can be implemented at the HEX to 
provide the high-energy x-rays at a flux of 1011 ph/s/mm2 at 
sample 

• Removable from the white beam.  It will allow EDXRD (high spatial 
resolution and depth resolution, low angular resolution) and 
imaging on the same sample, greatly enhancing the HEX scientific 
programs. 

• When the monochromatic beam size is reduced by slits, it can be 
used for ADXRD. 

BMIT Monochromator JEEP Monochromator 
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• HEX center branch is white-beam compatible.  Thus a small offset of 25 

mm is chosen to minimize distance between the two crystals – compact 

design and higher stability 

•Monochromator first crystal and beam stop must be removable/EPS 

interlocked to allow white-beam operation. 

• Source to monochromator distance (f1): 31 m 

• Monochromator to sample distance (f2): 73 m 

• Large (100 mm x 20 mm) field of view at the F station in the satellite 

building.  

• Adjustable x-ray energy 30-150 keV 

•  Energy change without readjusting bending  

•  Energy resolution is not important for imaging.  However, if possible, 

the monochromator should offer a high-resolution mode for possibly 

using it for diffraction in the future ~ 10-3 dE/E 

 

Design Ideas and Parameters 



8 

Monochromator Design 
 

• 4 mm thick SiC filter to control heat load on monochromator 

• Both crystals are meridionally bent towards the source to minimize energy 

difference between –top and –bottom parts of the beam 

• Inverse Cauchois geometry, at ~40 m bending radius gives zero energy 

difference.  However, 10-20 m bending radius yields acceptable energy-

difference, and larger band-width and higher intensity 

•  Asymmetric crystals to enhance bandwidth  

• 1-3 mm thick crystals 

• Consider the second crystal having slightly larger bending thickness than 

first crystal to achieve flat-top rocking curve – BNL MECT design used at 

NSLS X17 

• Will use water-cooling to reduce cost and simplify operations 
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Considerations for optimization 

 

• Large parameter space: Asymmetry angle, crystal thickness, 

bending radius 

• Asymmetry angle: larger = larger bandwidth = higher flux, if 

two large, the beam foot-print on crystal increases 

• Thickness: Thicker crystal = lower flux for low energy, would 

like to be able to image at 30 keV 

• Bending radius: 40 -50 m gives best energy resolution, 10-20 

m gives higher flux 

• An IDL program was written, using lamella model for bent-

crystals, to explore the parameter space.   
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Optimization 111, 50 keV 
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Analysis of Optimization Results 
 

• Benefit of asymmetry angle “levels off” after about 40 

degrees.  Thus the “symmetrical crystal cut” of 35.3 degrees 

asymmetry angle, with crystal surface being 100, is 

appropriate 

•  Smaller bending radius results in higher flux, at the cost of 

energy-difference between –top and –bottom of beam.  The 

flux benefit “levels off” at smaller than 10 m radius.   

• 1.5- 2 mm allows reasonable 30 keV performance.  Thicker 

crystals benefit higher energies. – Choose 2 mm for baseline 

design 

• Conclusion: 35.3 degrees chi, 1.8 mm (1st crystal) & 2.2 mm 

(second crystal) thickness, 10-50 m bending radius, 25 mm 

gap, +- 35 deg. angle range (if possible) 
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Survey of similar monochromators world-wide 

 

BMIT (CLS) JEEP 
(Diamond) 

UHX 
(ShangHai) 

IMBL 
(Australia) 

CAMD HEX (NSLSII) 

Asymmetry 
angle 
(degrees) 

15  44 45 15 35.3 35.3 

Reflection 111 & 220 
(either/or) 

111 111 111, 311 
via 
rotation 

111 111, 220 & 
311 via 
rotation 

Thickness 
(mm) 

2.0 4.0 4.0 1.0 0.7 1.8 1st crystal 
2.2 2nd crystal 

Offset (mm) 50 50 20 8-25 25 

Energy 
range (keV) 

25-150 53-150 45-150 30-100 30-80 30 – 150  

Cooling  Water, In-
Ga trough 

Cryogenic  Cryogenic Water, In-
Ga bath 

Water, 
one-side 

Water, one-
side 

Bender  2 Leaf 
Springs 

2 Leaf 
Springs 
 

2 Leaf 
Springs 
 

2 Leaf 
Springs 
 

2 Leaf 
Springs 
 

2 Leaf Springs 
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100 xtal, choice of 3 reflections 111, 022 & 311  

• Symmetrical crystal design, minimizes 

confusion 

• 111 has large (35.3 degrees) 

asymmetry angle, high flux for imaging 

•  022 is symmetrical reflection, high 

resolution, low flux, has second 

harmonics, for diffraction 

• 311 is has high resolution and 

moderate flux, no second harmonics, 

candidate for diffraction 

• 022 and 311, both about 30 degrees 

from nominal 111 position. 
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111 Reflection, T=2 mm, rho=30 m 
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111 Reflection, T=2 mm, rho=30 m 
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Simulation for 111 reflection, T=2 mm, Rho=20 m 

Energy(keV) 30 40 50 60 70 80 90 100 

Bragg angle (deg) 3.779 2.833 2.266 1.888 1.618 1.416 1.259 1.133 

Shift (mm) 188 252 315 379 442 505 568 631 

dE/E (x10-3) 1.4 1.9 2.4 2.8 3.3 3.8 4.2 4.7 

Integrated 
Reflectivity  
(micro-radians) 

35 53 62 67 69 70 70 66 

Reflectivity (%) 0.44 0.67 0.78 0.83 0.86 0.89 0.85 0.82 

Flux in F hutch 
(1011ph/s/mm2) 
  

0.12 0.62 1.1 1.4 1.4 1.3 1.1 0.86 

• At 150 keV, 1 m between crystals, the flux is still reasonable at 

2x1010ph/s/mm2.  
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Bending Mechanism 

 
BMIT CAMD 

IMBL JEEP 
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Specification for Imaging Monochromator 
Component Specification Notes 

First Crystal 12 mm (V) by 40 mm (H), 1.8 mm thick 
+- 35 deg. rotation in plane, 0.001 deg. resolution 
Bending radius (towards source) 10 m – infinity 
2 leaf spring bender 
 

Water-cooling 
required 

Second crystal 12 mm (V) by 40 mm (H), 2.2 mm thick 
+- 35 deg. rotation in plane, 0.001 deg. resolution 
Bending radius (towards source) 10 m – infinity 
+- 35 deg. rotation in plane, 0.0001 deg. resolution 
+- 2 deg. tilt, 0.001 deg. resolution 
2 leaf spring bender 
Distance to first crystal: 150 mm – 1 m z translation along beam 
25 mm Y offset from first crystal  

Water-cooling 
not required 

Compton 
scatter shield 

Water-cooled copper shielding around first crystal 

Beam stop  Water cooled copper block, normal incidence OK, coated with phosphor  

Vacuum vessel 
and support 

0.6 m width x 1.5 m length 

0-100 mm vertical adjustment to switch between monochromatic beam and 
white beam, 1 micron resolution 

position sensor required for EPS 

2 Quartz view ports of 6 inch diameter 
Diagnostic flag Near the exit port of vacuum vessel, 50 mm x 50 mm area  to  capture  both 

transmitted and diffracted beams from 2nd crystal, 100 mm vertical motion 
to retract from beam 
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Micro-focusing optics 
The requirements for micro-focusing: 

• Spot size of less than 10 microns 

• Option for line focusing is desirable  

• Focal distance of about 2 m.  The source distance is 100 m 

• Ease of alignment/operation preferred 
 

  Aperture Focal 
spot()  

Line-focus Energy 
tunability 

Price In-line 

K-B mirror 0.5 mm x 
10 mm* 

1  Yes Easy $400k No 

Bent 

Saw-tooth 

1 mm x 
10 mm 

1 Yes Relatively 
easy 

$100k, 
R&D 

Yes 

Kinoform 0.3 mm x 
0.1 mm 

0.2 No Difficult $100k, 
R&D 

Yes 

CRL ~0.5 mm  1 No Relatively 
difficult 

$100k Yes 

* Assuming 0.5 m long mirror at 1 mrad incidence angle 

• Consider the K-B mirror as the first option due to its commercial availability, good 

energy-tunability, Line-focus capability, and large aperture 

• Bent Saw-tooth optics as second option due to low price, positive experience at 

APS-1ID, line-focus capability and large aperture.   
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Effect of source length on micro-focusing 

0.01 mrad 

20 mm 
1 m 

0.5 mrad 

100 m 2 m 

1mm 5  FW 

132  FWHM 
2.6  FWHM 

• The 1 m length of the wiggler at aperture of 0.01 mrad contributes to FWHM of  2.5 .    

• Convolution of this with the 50X de-magnified source of 2.6  (H) x 0.14  (V) FWHM results 

in focal spot of 3.6  (H) x 2.5  (V) FWHM. 

• Specify the figure errors of the focusing optics to contribute to <2 in focal spot size.   

• Slope-error <1 micro-radians at working distance of 2 m. 
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Specification for Micro-focusing Optics 

Component Specification Notes 

Micro-focusing 
optics 

K-B mirrors (0.5 m length for each mirror)  

30-~100 keV, 2m focal length, 1  micro-radians slope error 

Removable from the beam 

N2 or vacuum compatible  

Desirable to have horizontal 
line focus 
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Heat load: manageable  
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1 mm Diamond 

filters (clamped) 

1 mm Diamond windows 

(vacuum tight) 

1 mm  SiC filter 

3 mm SiC filter 

1 mm Si monochromator, inclined 35.3 degrees 

Water-cooled  

Copper beam-stop 

Model 

• Aim to make beamline passively safe without additional filter 
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Absorbed Power 
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Heat load 
  Material Thickness 

Along Beam 
(mm) 

Incident Power 
Density 

(kW/mrad2) 

Absorbed 
Power Density 

(kW/mrad2) 

Maximum 
Absorbed 

Power  (W) 

Diamond filter 1 * Diamond 1 25.1 4.25 850 

Diamond filter 2 Diamond 1 20.9 2.13 426 

Diamond window 1 Diamond 1 18.8 1.29 258 

Diamond window 2 Diamond 1 17.5 1.14 228 

SiC filter 1 * SiC 1 16.3 3.64 728 

SiC filter 2 SiC 3 12.7 4.45 890 

Monochromator * Si 2 8.25 1.62 324 

Beam stop Cu n/a 6.63 6.63 1326 

:  Results of the power simulation. FEA  are performed for 

components denoted by * to assure survivability. 
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Cost/schedule 
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Summary 

• Optics: HEX optics and endstations are extremely simple, optical 
design and simulation is quite advanced 

• Technical feasibility:  Many technical challenges overcome. BNL 
expertise with high-energy x-ray optics. Future development in 
detector, optics, and new science directions are easily 
incorporated due to white-beam/removable optics concept. 

• Heat load is large, but manageable. 

• The scope, cost, schedule, risks are well-understood.   
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