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Overview

•Analysis of collective effects in NSLS-II is a work in progress
•R. Nagaoka (SOLEIL) , Y.C. Chae and M. Borland (APS) will visit June 5-9
•In this presentation I will give results obtained to-date and compare
expected behavior of NSLS-II to observed behavior in ESRF and APS

•Key features of NSLS-II are lower energy, use of damping wigglers 
and many small-gap (5mm) undulators

•Touschek Lifetime and Intrabeam Scattering are important issues
•We are evaluating the use of a Landau Bunch Lengthening Cavity
and the requirements for longitudinal / transverse feedback

•We are implementing ELEGANT on a cluster to allow parallel processing
•We believe having time-resolved synchrotron radiation monitoring 
as done at Sector 35 of APS is important
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eNI =Single Bunch Current

N=number of electrons in single bunch (7.5x109)
Ne =Bunch Charge  (1.2 nC)
M=number of bunches (1200)

Average Current
0T

eNMIav =

Peak Bunch Current
t

p
eNI
σπ2

=

(.4 ma)

(32 A for st=15 ps)
ignoring bunch lengthening

(500ma)

NSLS-II Current
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Limitations on Single Bunch Current

Short-Range Wakefield (Broad-Band Impedance)
Longitudinal Microwave Instability

---Inductive and Resistive Elements
Transverse Mode Coupling Instability

---Resisitive Wall
---Geometric Impedance:  Changes in Chamber Cross-Section

Limitations on Average Current

Long-Range Wakefield
Longitudinal Coupled Bunch Instability

—RF Cavity HOM
Transverse Coupled Bunch Instability

---Resistive Wall 
---RF Cavity HOM

Instabilities
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0.10.10.1sd 0 (%)
241415st 0 (ps)

9.5/4.77,3.511,5.5tx,ts (ms)
5/75.5/5.85/5xx , xy

10.50.5ey/ex (%)
330.5ex (nm)
.007.006.009ns

2.91.863.5a (x10-4)
9.59.04.2Vrf (MV)
351.9352.2500frf (MHz)
1100844.4~900C (m)
763E (GeV)
APS*ESRF*NSLS-II

*K. Harkay et al, Proc. EPAC2002, “A preliminary comparison of beam 
Instabilities among ESRF, APS and SPRING-8”

Comparison Between NSLS-II, ESRF, APS
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16(1)6(5)4(1)# RF Cav (Cells)
360224# BPMs
160290# Bellows
480571# Flanges
AlSS/AL/CuAl/SS/CuVacCh Material
2528#Small Gap IDs
04 (2m)# In Vac IDs
403232# Straights
APS*ESRF*NSLS-II

SS155
SS81
Cu84
Al112
SS11mm16
MaterialGapNumber

ESRF*

Al19.61
Al52
Al8mm12

MaterialGapNumber

APS*

Comparison Continued
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105134103889* Uw (KeV)

0.0950.0900.0900.092# sdw (%)
0.420.420.460.49# exw (nm)

105515bgap (mm)
0.75236Lw (m)
3.51.411.8Bw (T)
1501419100lw (mm)
2223by

22215bx

2668NID

DW U19 U14 SCW

*for NID IDs #cumulative result from left to right

Ad Hoc ID Configuration for NSLS-II
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Intrabeam Scattering

B. Podobedov
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Touschek Scaling with Emittance
2 2
e b x acc x

4 2
tous _1/ 2 acc x

1 r c N D
V

′ ⎛ ⎞π σ ε β= ⎜ ⎟τ γ ε γ ε⎝ ⎠
[ ]

2
2 acc x

acc x 2
x

/ ε β′ζ = ε γσ ≈
γ ε

Roughly εx independent, for fixed  εy

Lifetime remains roughly constant

as we reduce emittance!

Lifetime very sensitive to energy 
acceptance!

Ignores dispersion

Symbols assume <βx> =13 m, εacc = 3%

2.5 nm 0.43 nm

B. Podobedov

•ZAP includes IBS
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Vertical Broad-Band Impedance*

ESRF: fres=22GHz     b Rs=6.5MW/m     Q=1
Ith=0.8ma (zero chromaticity)
Ith=20ma (xx=9, xy=13)

APS:   fres=25GHz      Rs=1.2MW/m       Q=1
Ith=2ma (zero chromaticity)
Ith=9ma (xx=5, xy=6)

*K. Harkay et al, Proc. EPAC2002, “A preliminary comparison of beam 
Instabilities among ESRF, APS and SPRING-8”

APS

Transverse Mode Coupling Instability
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Transverse Coupled Bunch Instability Threshold

•Broad-Band Resonator: Ry=1MW/m, fres=30Ghz, Q=1
•Resistive Wall: 100m of Copper with full gap of 5mm
•With Landau Cavity
•by=3m

M. Blaskiewicz
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Longitudinal Microwave Instability
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Longitudinal Broad-Band (Q=1) Impedance*

ESRF: fres=30 GHz     Rs=42kW (Z/n=0.4W)      Ith=3.5ma
APS:                           Z/n=0.5W Ith=5.0ma
NSLS-II:  30 GHz       Z/n~0.25W?

st(ps) sd (%)

3.5ma 5ma
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Longitudinal Microwave Instability

Oide & Yokoya
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Scaling indicates that behavior should be similar to ESRF.  
Oide & Yokoya result yields lower threshold than observed at ESRF&APS.
Li Hua Yu is in process of carrying out tracking calculations using Elegant.
At this time, his results agree with Oide & Yokoya. Predict NSLS-II threshold

maIth 6.0≈
Work continuing to resolve this discrepancy.
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N. Towne

Passive Third-harmonic Landau Cavity (1.5 GHz)

Use of a bunch lengthening Landau cavity can increase Touschek lifetime, 
raise microwave instability threshold and decrease intrabeam scattering.
Initial estimates indicate we can increase bunch length by factor of ~2.5
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CESR-B cavity longitudinal impedance and coupled bunch growth rates

CESR-B cavity geometry: Superfish Calculation

951038.92085.399

154491.12034.228

135143.81585.511

3946.91387.5

374.91235.0

483611109.5

106118.21019.929

28162.4976.696

QShunt Impedance 
(Ohms)

Frequency (MHZ)

CESR-B Higher Order Longitudinal Modes

With 4 cavities and Iav=0.5 A, ZAP predicts the longitudinal coupled  bunch
growth time is 37ms, which is larger than radiation damping time of 5.5ms. 

Jim Rose
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Courtesy of 
Christopher Stelmach

Courtesy of 
Christopher Stelmach

CAD 3D model CAD 3D model 

GdfidL 3D model 

A. Blednykh

3-D GdFidL Calculations for CESR-B Cavity



17

NSLS-II Impedance Budget

Alexei Blednykh
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NSLS-II Impedance Budget (Cont.)

Alexei Blednykh
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Alexei Blednykh

NSLS-II Impedance Budget (Cont.)
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Gunzel EPAC2002

ESRF Impedance Budget
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Chae PAC2003

APS Impedance Budget
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SOLEIL Impedance Budget

R. Nagaoka
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Concluding Remarks

• Single bunch and average current goals appear to be achievable
• Transverse coupled bunch instability may require feedback
• We are facing a theoretical puzzle in regard to microwave instability

threshold, which we are working to resolve.  However, the threshold is 
above the 0.4ma required.

• At the moment we are estimating instability thresholds based on the
impedances observed at ESRF and APS.  

• We are calculating the NSLS-II impedance budget.  Once this is done, 
we will estimate the instability thresholds using the calculated
impedance.

• Realistic calculation of the Touschek lifetime is of critical importance.
Work on this problem is underway using both TRACY2 and ELEGANT.
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