Small Angle X-Ray Scattering (SAXS) from Bulks and Surfaces

Oleg Gang (ogang@bnl.gov) Center for Functional Nanomaterials Brookhaven National Laboratory Upton, NY, USA

Columbia University, October 28, 2015

Center for Functional Nanomaterials, one of the 5 Department of Energy premier Nano-centers. Broad range of methods/instruments are open for use (free of charge, via proposal) including the use beamlines National Synchrotron Light Source IIthe world brightest synchrotron (became operational in 2015)

Outline

- Why Scattering and its Basics
- ✓ Small Angle X-ray Scattering (SAXS)
 - Scattering from Individual Objects
 - Scattering from Lattices and Complex Organizations
- Surface Scattering
 - Grazing Incidence Small Angle X-ray Scattering (GISAXS)
 - X-ray Reflectivity (XRR)
- Instrumentation and data processing
- Examples of Applications for Material Studies (through the talk)

Probing Different Length-Scales

Nanoscale objects: same elements - new properties

Macro gold

Nano gold

CFN 5.0kV 8.7mm x220k SE(M.LA0) 10/19/2010 200nm

CFN 5.0kV 5.4mm x250k SE(M LA0) 4/26/2011 200nm

Why scattering?

- Advantages:
 - Fast
 - Meaningful global average instead of just local (spurious?) information
 - Can probe buried, 3D structures (instead of surfaces or projections)
 - In-situ and non-destructive:
 - Can probe in liquid state, *during* transformations, inside functioning devices, ...
- Main disadvantage:
 - Hard to interpret data

Different "kinds" of Scattering

A Brief History of Small Angle Scattering

- SAS methods were introduced in the 1930s, by André Guinier
- Throughout the 1938 1950s, Guinier and others developed SAS fundamentals (inc. Peter Debye, Otto Kratky, Günther Porod)
- First experiments with proteins occurred in the 1950s
- The use of SAS increased with the 'user friendly' beamlines that adopted the method.
- Since the mid-1990's, the number of SAS publications has increased.

What can We Measure?

•There is *strong* dependence between some of these terms. •SAS experiments, *complemented by other measurements*, can yield rich information about the microstructure.

0.1

Scattering vs Imaging: Reveal the Difference

Hydrogels formed from block copolymer of Lysine and Valine

Darrin Pochan, U. Delaware

Confocal Microscopy

Images miss differences

0.5 wt%

10⁻⁴

q (A⁻¹)

USANS

10⁻³

Scattering vs Imaging: Discover the Similarity

Isotactic polystyrene foams

Jim Aubert, SNL

Ultra-small-angle neutron scattering: a new tool for materials research Cur. Opinion Sol. State & Mat. Sci., 2004, 8(1): p:39-47

Scattering methods

- Neutron Scattering scatter from nucleus, element sensitive
- X-rays scatter off of all the atoms/particles in the sample (sensitive to electron density difference)

• The scattered waves interfere, which produces distinct spots or rings at specific angles...

 $n\lambda = 2d\sin\theta$

 2θ

JUNN/

Small Angle Scattering

Q or q is wavevector transfer D or d is characteristic length

Crystallography vs. SAXS

hkl	I	σ(I)
002	14800	450
003	31	28
004	16450	532
005	97	54
006	12950	385
008	17780	620

Advantage	Limitation		
Atomic structure information	Requires a crystal		
Readily available software	Flexible portions may not be seen		

Advantage	Limitation	
Analysis in native conditions	Low resolution (10-20 Å)	
May see 'floppy' domains not apparent in crystal structures	Modeling ambiguity	

Atomic Form Factor

Atomic form factors are fundamental parameters in X-ray techniques.

Electron cloud in atoms has radial density distribution $\rho(r)$

$$f(q) = 4\pi \int \rho(r) r^2 \frac{\sin(qr)}{qr} dr$$

 $\rho(r)$ were obtained from quantum chemical calculations. Atomic form factors for all elements and important ions were tabulated in International Tables for Crystallography and other handbooks.

> Atoms with higher Z will scatter stronger.

- > In low-resolution model reconstruction from SAXS data using f(q)=const

Data taken from International Tables for Crystallography, Vol. C, Table 6.1.1.1

Examples of scattering

Diffuse scattering

Multiple length scales. Complimentary methods are helpful

Weak ordering

Prevailing length scale in the system

Oriented sample

Oriented sample. Can find orientation direction and degree of orientation

- Large dynamical range of scattering
- Not necessarily a specific features are present
- Integration and background corrections needed

Small Angle Diffraction Well defined periodic nanostructures

What can we see?

When the monster came, Lola, like the peppered moth and the arctic hare, remained motionless and undetected. Harold, of course, was immediately devoured.

When the monster came, Lola, like the peppered moth and the arctic hare, remained motionless and undetected. Harold, of course, was immediately devoured.

Scattering length density

Measure of interaction difference of radiation with atoms/molecules in object and surroundings

LIGHT: refractive index (electronic structure) X-RAYS: scattering length (electronic structure) NEUTRONS: scattering length (nuclear structure)

Mass density

Contrast = $(\rho_1 - \rho_2)^2$

natural (e.g. porous silica and air) or deliberately changed valid for n and X-rays (ASAXS)

Scattering length

Contrast in scattering

Babinet principle

Atomic Scattering Lengths

Element	Neutrons (10 ⁻¹² cm)	X-rays (10 ⁻¹² cm)	Electrons	
¹ H	-0.374	0.28	1	0
² H (D)	0.667	0.28	1	0
С	0.665	1.67	6	
N	0.940	1.97	7	
0	0.580	2.25	8	
Р	0.520	4.23	15	

Anomalous Small-Angle X-ray

- Why anomalous SAXS? Scattering
- Element-specific contrast variation
- Use to separate population distributions of scatterers
- Will ASAXS solve every problem?
 - Not even close

- The easy problems are already taken

Anomalous dispersion terms of Yb in SN-88 near the Yb L_{III} edge (8.939 keV)

Neutrons

Contrast matching

SAXS is a broad range of methods

what type of information it can provide?

Outline

- ✓ Why Scattering and its Basics
- ✓ Small Angle X-ray Scattering (SAXS)
 - ✓ Scattering from Individual Objects
 - ✓ Scattering from Lattices and Complex Organizations
- ✓ Surface Scattering
 - ✓ Grazing Incidence Small Angle X-ray Scattering (GISAXS)
 - ✓ X-ray Reflectivity (XRR)
- ✓ Instrumentation and data processing
- Examples of Applications for Material Studies (through the talk)

SAXS Experiment

SAXS from Molecular Solutions

Atomic apparent form factor / contrast :

$$A_{j}(q) = f_{j}(q) - g_{j}(q)$$
atomic form
factor in vacuum
form factor of
excluded solvent

X-ray scattering total amplitude:

$$\sum_{j} A_{j} \exp(i\vec{q} \bullet \vec{r}_{j})$$

In solution, X-ray beam sees all orientations of molecules :

$$I(q) = \left\langle I(\vec{q}) \right\rangle_{\Omega} = \left\{ \left\langle \sum_{j} A_{j} \exp(i\vec{q} \bullet \vec{r}_{j}) \right\rangle_{\Omega} \right\}^{2} \xrightarrow{\text{loss of phase} \text{information}}_{\text{loss of angular}}$$

$$= \sum_{j} \sum_{k} A_{j} A_{k} \frac{\sin(qr_{jk})}{qr_{jk}} = \sum_{j} A_{j}^{2} + 2\sum_{j} \sum_{k>j} A_{j} A_{k} \frac{\sin(qr_{jk})}{qr_{jk}}$$

Atom pair distance /
Structural information interference

Solution x-ray scattering is a 1D profile which encodes molecular structural information.

form factors of particles j and k can be used in a similar way

What do we measure in SAXS?

Measured quantity

$$(I(q)) \propto \frac{d\Sigma(q)}{d\Omega} = \frac{N}{V} V^2_{particle} (\rho_1 - \rho_2)^2 P(q) S(q)$$

Dilute = independent scatterers = NO interparticle effects

Total intensity = sum of individual particle scattering

$$I(q) \propto \frac{N}{V} V^2_{particle} (\rho_1 - \rho_2)^2 P(q) S(q)$$

P(q) = Form factor - SHAPE and SIZE information P(q) is dimensionless and P(0) = 1

* In the literature, as in this presentation, both P(q) and F(q) are commonly used symbols for form factors

Form Factor for Sphere

The form factors of some objects with simple shapes have analytical formula expression, for example, sphere. Sphere is a widely used model in characterizing the size or size distribution of globular particles in structural biology and nanoscale material science.

Sphere with homogenous electron density and radius R:

$$A(\vec{q}) = \int \rho(\vec{r}) \exp(-i\vec{q} \cdot \vec{r}) d\vec{r}$$

$$A(q) = 4\pi \int_{0}^{\infty} \rho(r) \frac{\sin(qr)}{qr} r^{2} dr = 4\pi \int_{0}^{R} \frac{\sin(qr)}{qr} r^{2} dr$$

$$= \frac{4\pi}{q} \int_{0}^{R} \sin(qr) r dr = \dots \text{ (partial integration)}...$$

$$= \frac{4}{3}\pi \left[R^{3} \frac{3[\sin(qR) - qR\cos(qR)]}{(qR)^{3}} \right]$$

Figure modified from: Lambard, Lessieur and Zemb, J. Phys. I France, 1992, (2) 1191

Effect of Particle Size and Polydispersity

(volume fraction = 1%, contrast = 10^{-6} Å⁻², bkgd = 0.01)

- Instrument resolution can significantly affect the data, masking "true" size distribution, the sample might be not so bad (polidisperse) as it might look
- Resolution should be accounted to separate effect of polydispersity

Scattering from Individual Shaped Objects

SAXS Scattering

Common Form Factors of Shaped Objects (many more were computed numerically)

"Structure Analysis by Small Angle X-Ray and Neutron Scattering" L. A. Feigen and D. I. Svergun

$$I(q) \sim q^{-\alpha} \qquad \alpha = - \begin{bmatrix} 3 & \text{Sphere} \\ 2 & \text{Disk} \\ 1 & \text{Rod} \end{bmatrix}$$

Radius of Gyration and Guinier Law

• Guiner Law allows finding R_g without any model assumption

• The Guinier region of the scattering data would not be linear if sample contains aggregation

Determining R_g from Guinier Plots

Guinier Law 1.80 Points 9 to 18 fidel = 0.35sRg limits: 0.700 to 1.28 $\ln[I(q)] \approx -\frac{qR}{2}$ $Rg = 47.4 \pm 0.614$ I(0) $I_0 = 6.047 \pm 5.63 e^{-2}$ 1.60 R_a – radius of gyration I(0) – forward scattering \mathbf{q}_{\min} () 1.40 () Plot ln / vs. q^2 • $- q - \min < q < 1.3 R_{G}^{-1}$ 1.20 - Slope αR_{α} - Check for linearity **q**_{max} I(0) gives an independent estimation 1.00 • of the molar mass of the protein. 0.00 0.20 0.40 0.60 0.80 Requires accurate protein s**2*E-3 $q^2 [Å^{-1}]$ concentration determination

> Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences 1938, 206:1374-1376 Petoukhov, et. al., *J. Appl. Cryst.* 40, s223 (2007)

Guinier Law Examples

 Deviant Guinier Plots aren't necessarily 'bad' as they tell you something about the state of the macromolecule in solution

• BSA Example

BSA

- 1) aggregated
- 2) 'good' data
- 3) inter-particle repulsion

Journal of Structural Biology 172 (2010) 128

Basics for Interpreting Guinier plots

- What is the q_{min} in your experimental data?
 - For very large particles, you will need a lower q_{min} to use the Guinier region for R_q determination.
 - This will also be determined by the number of data points in your 1D profile.
- The qmax will depend on the shape of your molecule.
 - For spherical particles, $q_{max} < 1.3^*R_g$
 - For elongated particles, $q_{max} < 0.8^*R_g$
- The Guinier also provides I(0), which is proportional to the # of electrons in the scattering particle (MW).

Scattering from Polymers

From Ryong-Joon Roe, "Methods of X-ray and Neutron Scattering in Polymer Science"

Kratky Plot ($Iq^2 vs q$):

reveling polymer/macromolecule structure (compactness)

Plot lq² vs. q. •

•

Differentiation between folded and unfolded protein

Distance distribution function

Deriving Information from SAXS Data

Applications of SAXS: Complex Protein Structures can be Revealed in situ

915-3

Molecular flexibility

• Flexible structures can/should be modeled as an ensemble of multiple conformations

Scattering Regions

Mass Fractal

Scattering Behavior

Hierarchical structure – analysis

Outline

- ✓ Why Scattering and its Basics
- ✓ Small Angle X-ray Scattering (SAXS)
 - ✓ Scattering from Individual Objects
 - ✓ Scattering from Lattices and Complex Organizations
- ✓ Surface Scattering
 - ✓ Grazing Incidence Small Angle X-ray Scattering (GISAXS)
 - ✓ X-ray Reflectivity (XRR)
- ✓ Instrumentation and data processing
- ✓ Examples of Applications for Material Studies (through the talk)

Interference Effects

Interaction potential Form factor and Structure Factor

X-ray Scattering from Structures

- Can easily infer amount of order:
 - Amorphous
 - Polycrystalline
 - Single crystal

X-Ray diffraction: Revealing order at scales 1-1000Å

Long and Short range Positional Order

Lamellar and Columnar Mesophases: X-ray patterns

2D Lattice Distorsion

Powder sample

Assembly of Nanoparticle Systems with DNA

http://www.mhhe.com/biosci/esp/2001_gbio/ folder_structure/ge/m4/s1/

DNA-guided 3D Ordering of Nanoparticles

D. Nykypanchuk, M. Maye, D. Van der Lelie, and O. Gang, Nature, 451, 549 (2008)

DNA-guided 3D Ordering of Nanoparticles

body centered cubic (BCC)

D. Nykypanchuk et al, Nature, 451, 549 (2008); H. Xiong et al, JACS (2008); H. Xiong et al, PRL (2009)

Compositional Order in Binary Systems

CsCl structure

Binary QD and Au 180 0.0 0.2 150 Compositional disorder η=0 0.4 ξ (nm) 120 5 0.6 90-0.8 Au NP 60 Q7 Au NP/Q7 1.0 30 40 80 120 160 Ν Softer shell

Compositional disorder $\eta = (r_A - F_A)(1 - F_A)$

- r_A : fraction of A sites occupied by A particles
- F_A :fraction of A particles in the lattice

Compositional disorder continuously increases with the ssDNA shell thickness

Scattering from Nanoparticle Lattices

Yager et a., J. of Appl. Cryst, 47, 118 (2014)

Cube-Directed Assembly of Spheres

F. Lu, et al, (2015), Nature Communications

Outline

- ✓ Why Scattering and its Basics
- ✓ Small Angle X-ray Scattering (SAXS)
 - ✓ Scattering from Individual Objects
 - ✓ Scattering from Lattices and Complex Organizations
- ✓ Surface Scattering
 - ✓ Grazing Incidence Small Angle X-ray Scattering (GISAXS)
 - ✓ X-ray Reflectivity (XRR)
- ✓ Instrumentation and data processing
- ✓ Examples of Applications for Material Studies (through the talk)

X-RAY METHODS AT GRAZING INCIDENCE

Reflectometry

– Surface coverage

- Probes in-plane structure on surface and interfaces (with Q_x)
- \bullet In-plane length-scales (correlations) from ${\sim}100$ nm to ${>}40~\mu m$
- Roughness correlation from layer to layer
- Use of Distorted Wave Born Approximation to model 2D map

Reflection and refraction – Perfect surface

 α_c critical angle for total external reflection of X-rays

$$\alpha_c = \sqrt{2\delta} = \sqrt{\frac{r_0}{\pi}} \times \lambda \times \sqrt{\rho} \approx 0.1 \text{ to } 0.5^\circ$$

Grazing Incidence Small Angle X-ray Scattering (GISAXS)

- Can look at surfaces exposed to liquid, vapor, etc.
- Can apply temperature, shear, electric-field, etc.

- Scattering measurement: symmetry, spacing, order, grain size, orientation
- Reflection angle provides limited depth-profiling
- Beam projection onto sample (~few mm and more) averages over large area
- Quantitative modeling of GISAXS (multiple reflections, etc.) is non-trivial

Grazing Incidence Diffraction ⇒ Structure parallel to surface (2D diffraction)

- Evanescence
 ⇒ Scattering mostly from surface
- Lateral periodicity $d \Rightarrow \text{Peak}$ at $q_{xy} = 2\pi/d$
- In-plane structure of 2D lattice is determined from the diffraction peaks, similar to 3D
- Lateral correlation length ξ_{\perp}

 \Rightarrow Resolution-corrected HWHM{ q_{xy} } ~ $1/\xi_{\perp}$

• q_z -dependence (e.g., Bragg rods):

 \Rightarrow Molecular form factor, molecular tilt, etc.

X-ray Specular Reflectivity ⇒ Structure normal to surface

X-Ray Reflectivity: Principle

Visible Light
Reflectivity: n_1 $n_2 > 1$ n_2

X-Ray n_1 Reflectivity: $-n_2 < 1$ n_2

adapted M. Tolan Univ. Dortmund

n₁>n₂

• <u>Ideally sharp and flat interface</u>: \Rightarrow Fresnel reflectivity

$$R_F(q_z) = \left| \frac{q_z - \sqrt{q_z^2 - q_c^2}}{q_z + \sqrt{q_z^2 - q_c^2}} \right|^2 = \begin{cases} 1 & \text{for } q_z < q_c \\ \sim (q_c/2q_z)^4 & \text{for } q_z >> q_c \end{cases}$$

• Real interface (roughness, diffuseness, layers, etc.):

$$R(q_z) \approx R_F(q_z) \left| \int dz \frac{d}{dz} \left[\frac{\langle \rho(z) \rangle}{\rho_\infty} \right] \exp(iq_z z) \right|^2$$

X-ray Specular Reflectivity ⇒ Structure normal to surface

Modeling is needed to reconstruct the electron density profile

- > XR: low incident angles ($<5^{\circ}$)
- Relatively large surface areas are probed
- > XR: Electron density profile normal to the surface
- Large dynamical range of profile measurements: thickness 0.1- hundred nm, relative contrast ~ few %
- Liquid surfaces can be investigated!

Features - Footprint effect

In the regime of total external reflection, some intensity is lost as the footprint on the surface is too large

Foot print depends on beam width & sample geometry

What affects reflectivity?

Small (very) *Q*: Absorption effect and footprint

X-ray reflectivity for layered system

Simple estimation of film thickness

Fringes with uniform spacing Thickness of the layer : $t = \frac{2\pi}{\Delta q_z}$

Multilayer films require detailed modeling accounting for each interface

Multiple scattering (dynamical calculation)

vacuum 1 $z_1 = 0$ n_2 R_2 2 layer d_2 R_2 z_2 ultiple R_{j-1} erfaces T_{j-1} z_{j-1} n. layer R_i z_j T_{j+1} $\overline{R_{j+1}}$ T_{N-1} . R_{N-1} z_{N-1} n_N T_N \widehat{R}_N Ν layer d_N T_N R_N z_N layer N+1

→Reflectivity used as an everyday laboratory tool to measure the thickness of layers deposited on a substrate

adapted from M. Tolan Univ. Dortmund

Structure of 2D nanoparticle/DNA monolayer

High energy (19keV) X-ray probes normal surface structure in-situ at liquid-solid interface

Outline

- ✓ Why Scattering and its Basics
- ✓ Small Angle X-ray Scattering (SAXS)
 - ✓ Scattering from Individual Objects
 - ✓ Scattering from Lattices and Complex Organizations
- ✓ Surface Scattering
 - ✓ Grazing Incidence Small Angle X-ray Scattering (GISAXS)
 - ✓ X-ray Reflectivity (XRR)
- ✓ Instrumentation and data processing
- ✓ Examples of Applications for Material Studies (through the talk)

Synchrotron: NSLS II

Coherent Hard X-ray Scattering (CHX) Beamline

- NSLS II \$912M+
- 791 m circumference
- 58 beam ports
- 3 GeV, 500 mA

• Each x-ray beam is ~10¹³ ph/s

Experimental setup (X9 NSLS, does not exist any more)

L. Yang, "Using an in-vacuum CCD detector for simultaneous small- and wide-angle scattering at beamline X9" J. Synch. Rad. 2013

• SAXS instruments in general use a series of slits to define beam size and minimize parasitic scattering

• A SAXS detector and an in-vacuum WAXS detector can provide a continuous reciprocal space coverage from molecular to micron sizes

Following appropriate data reduction and calibration procedure

Number of different approaches, often specific to the used area detector & instrument design

Data2D = (Sa2D - Dark2D) - C * (Bckg2D - Dark2D)

C ~ sample transmission, measurement times, incoming intensity etc.
Parameters that define scattering geometry

• Some area of 2D detector has to be masked for data reduction

q

• Calibration of distances and x-ray energy is crucial for the correct conversion to q

	es.wavelength = 0.886	# X-ray wavelength (Å)
	$es.bm_ctr_x = 425$	<pre># pixel position of the X-ray beam</pre>
	$es.bm_ctr_y = 480$	#
	es.ratioDw = 49.8	<pre># this is the sample-to-detector distance divided by</pre>
1		# the width of the detector
4π	es.det_orient = 0	<pre># orientation of the detector</pre>
$=$ $\sin\theta$	es.det_tilt = 0	# 0, 0, 0 for the SAXS detector
λ	es.det_phi = 0	#
$=\frac{4\pi}{\lambda}\sin\theta$	<pre>es.ratioDw = 49.8 es.det_orient = 0 es.det_tilt = 0 es.det_phi = 0</pre>	<pre># this is the sample-to-detector distance divided by # the width of the detector # orientation of the detector # 0, 0, 0 for the SAXS detector #</pre>

2D to 1D

Some of the tools to convert 2D data to 1D data

- Ideally tools should be provided with instrument
 - Like ESRF (software is mostly specific for their data)
 - <u>http://www.sztucki.de/SAXSutilities/</u> (Michael Sztucki, processing of SAXS data)
 - <u>http://www.esrf.eu/computing/scientific/SAXS/</u> (Peter Boesecke, manipulation of 2D data)
- Fit2D <u>http://www.esrf.fr/computing/scientific/FIT2D/</u> free, in use for very long time (= debugged), large user base, _very_ capable
 - However, not very user friendly and cumbersome for data analysis of large number of data sets – need to learn how to write scripts.
 - Ideal for processing large sets of samples (scripting).
 - Available for many platforms
- <u>Datasqueeze</u> <u>http://www.datasqueezesoftware.com/</u>, \$100/\$50 for user license, Windows/Linux/MacOS.
- <u>Nika</u> Igor Pro (6.0, Mac & Windows) based package (<u>http://usaxs.xor.aps.anl.gov/</u>) – free but need Igor Pro license (<u>http://www.wavemetrics.com/</u>), \$550/\$395 for user license.
 - Igor Pro scripts are open source and can be modified by anyone. Open source

Advanced X-Ray Scattering at NSLS II

- Complex Materials Scattering (CMS) 2016: unique, automated high-throughput material exploration
- Soft Matter Interfaces (SMI) 2016-17: unique, highperformance undulator-based
- Wide energy range (2 to 24 keV) will enable new resonant scattering experiments on hybrid (soft/hard) materials
- Wide *q*-range for studies of hierarchical materials
- Microbeams (~2 μ m) for mapping of heterogeneous samples
- High-flux and fast detectors for kinetic, in-situ, and inoperando experiments

Useful Material

- Heimo Schnablegger & Yashveer Singh, "The SAXS Guide"
- O. GlaQer & O. Kratky, "Small-Angle X-ray Scattering", 1982, available free on line.
- Ryong-Joon Roe, "Methods of X-ray and Neutron Scattering in Polymer Science"
- D. Svergun and M. Koch, "Small-angle sca8ering studies of biological macromolecules in solu@on", Rep. Prog. Phys. 66 (2003) 1735–1782.
- Software: Irena, Nika

Acknowledgments

Lin Yang, Masa Fukuto, Kevin Yager, Dmytro Nykypanchuk, Mikhail Zhernenkov (BNL) Franck Artzner (U. Rennes, France), Jan Ilavsky (ANL) Online materials from Rigaku and scattering schools

Assignment

1. Derive a radius of gyration for the shell of given thickness and diameter.

2. Your colleague obtained x-ray reflectivity (right) and grazing incidence diffraction (left) data from the nanoparticle monolayer at different salt conditions and for the underlying lipid layer. Provide your interpretation of the monolayer structure and its evolution using the plots. Does monolayer have in-plane order? What kind? How do the order and the correlation length (assume no contribution from resolution) change with salt increase? What is the thickness of the monolayer? Can you tell anything about nanoparticle shell from this estimation?

Small Angle X-Ray Scattering (SAXS) from Bulks and Surfaces

Oleg Gang (ogang@bnl.gov) Center for Functional Nanomaterials Brookhaven National Laboratory Upton, NY, USA

Columbia University, October 28, 2015

