MSAE E8235x - Selected Topics in Materials Science Columbia University, November 11, 2015

Resonant Inelastic X-ray Scattering (RIXS)

BRUUKHAVEN Ignace Jarrige, Email: jarrige@bnl.gov, Phone: 631-344-8814

Ignace Jarrige

And here is my Life Timeline:

Because this could be you at 6:40 pm today:

And because this is you right now:

Let me already give you...

The *take away message* of this lecture:

Why do we use RIXS?

RIXS probes the behavior of the valence electrons (the most important electrons for physics and chemistry!), both local and collective

• How does RIXS work?

RIXS measures energy change (spectroscopy) and momentum change (scattering) of photons scattered from the sample

Why does RIXS need light sources?
RIXS is photon hungry, and needs tunability of photon energy

• Who uses RIXS?

Bulk of users are physicists, but interest from material scientists and chemists is rapidly growing

The *take away message* of this lecture:

• And also, RIXS instruments look **CDDL**:

ID32 at the ESRF (Grenoble, France), 12 meters. A similar spectrometer, 15 meters in length, is currently in construction at NSLS-II.

... And because every lecture needs an outline:

- Section 1: What's the big deal with electron behavior?
- Section 2: From band structure to electron behavior
- Section 3: Probing the band structure
- Section 4: How does RIXS work?
- Section 5: Examples of RIXS studies
- Section 6: RIXS at NSLS-II

Section 1:

What's the big deal with electron behavior?

Different Probes for Different Scales

8

XRD *E. Dooryhee* X-ray Microscopy *Q. Shen* X-ray Imaging *W.K. Lee*

SAXS, O. Gang

Atoms

electrons

nucleus

XAS, B. Ravel, XPS, A. Boscoboinic

RIXS Probes Local and Collective Electron Behavior

All the Electrons? No, the Valence Electrons.

The color of the **<u>outer shell</u>** determines which candy I want to eat first:

The **Valence Electrons** Determine:

Chemical Reactivity and **Bonding Between Atoms**

Electrical and **Magnetic Properties of Matter**

The Social Behavior of the Valence Electrons in Materials

Valence Electron Behavior Making Our Life Easy

'Sea' of mobile electrons

Power Lines

Hybrid Car Capacitors

Bound electrons

Mobile and Bound Electrons

Collective Valence Electron Behavior Making Our Life Easier

NYC a 10 min ride from BNL

SUPERCONDUCTIVITY

\$20 billion / year savings in the US

Chip 500 x faster than Iphone 6's

From band structure to electron behavior

The Valence Electrons on the Element Map

How Do Valence Bands Form?

From Band Structure to Electron Behavior

Filling of the valence band, red=occupied, blue=unoccupied

From Band Structure to Electron Behavior

Each band has a dispersion relation, which is the energy of the band as a function of the electron's wavevector $k (k = q/\hbar)$ where q is the momentum)

Why Use the <u>Reciprocal Space</u>?

Crystals in real space are big!

Crystal lattices of macroscopic dimension have about 10⁷ unit cells in each dimension. Rather than exploring each of them, exploit their periodicity

Periodicity is key

Observable functions related to a crystal lattice (charge and spin densities, electric potential, ...) are all periodic because of the lattice vectors

Mathematical description of crystal structure
Reciprocal lattice is a Fourier transform of the lattice in the real space:

$$\mathbf{a}^* = 2\pi \frac{\mathbf{b} \times \mathbf{c}}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})} \mathbf{b}^* = 2\pi \frac{\mathbf{c} \times \mathbf{a}}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})} \mathbf{c}^* = 2\pi \frac{\mathbf{a} \times \mathbf{b}}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}$$

Infinity contained in one cell The first unit cell in the reciprocal space (the first <u>Brillouin zone</u>), contains all the information we need about an infinitely periodic crystal

The Link between Electron Behavior and Band Structure

<u>Copper</u> versus <u>Silicon</u>:

Same single crystal structure (face-cubic centered)

Yet very different properties (and appearances):

The origin of these differences is in the band structure!

The Link between Electron Behavior and Band Structure

Different valence orbitals, forming different bands:

The band structure contains precious information about the electron behavior, which governs the material properties

So, now... how do I probe the band structure??

Probing the band structure

How does spectroscopy probe valence bands?

Let's make an analogy between valence bands and bowling ball racks:

How does spectroscopy probe valence bands?

Let's make an analogy between valence bands and bowling ball racks:

If I know the energy it takes to bring the ball up, I know the <u>energy</u> <u>difference</u> <u>between the two</u> levels

How does spectroscopy probe valence bands?

Let's make an analogy between valence bands and bowling ball racks:

Great, we've rediscovered optical spectroscopy!

The Early Days of Optical Spectroscopy: First attribution of spectra to chemical elements by Kirchhoff and Bunsen in 1860 with their spectroscope

(to continue with the analogy, and because history is fun: The first indoor bowling alley worldwide opened in New-York in 1840!)

Great, we've rediscovered optical spectroscopy!

State-of-the art Optical Spectroscopy: Magneto-optical Spectrometer

Can detect transitions between near IR (0.8 eV) to UV (6 eV)

Another way to do it: <u>use x-rays</u> to excite core-level electrons

Use of monochromatic x-rays to probe valence bands offers (1/2):

29

Element Selectivity:

Charge Selectivity:

Use of monochromatic x-rays to probe valence bands offers (2/2):

X-ray spectroscopy can explore energy and momentum of the bands

It's about time to reveal RIXS!!!

Drum roll please.....

How does RIXS work?

The RIXS process revealed

Three steps involved via photon-in photon-out process:

The RIXS process revealed

Three steps involved via photon-in photon-out process:

The RIXS process revealed

Three steps involved via photon-in photon-out process:

The RIXS process revealed

Three steps involved via photon-in photon-out process:

Intermediate state

The RIXS process revealed

Three steps involved via photon-in photon-out process:

The RIXS process revealed: Summary

- RIXS measures energy and momentum transfers $(\Delta E, \Delta q)$ from light to electrons
- It probes local and cooperative electronic effects between the excited and decayed valence electrons and also the neighboring electrons = <u>RIXS probes electronic correlations</u>

$$E_2, k_2$$

$$\Delta E = E_1 - E_2$$

$$\Delta q = k_1 - k_2$$

$$K_1$$

Our big 'light bulb': NSLS-II

One Light Source... Many Beamlines: Lights of different color (energy), size, brightness

Optics used to split the light into a rainbow of energies

NSLS-II makes the electrons glow!

RIXS vs XAS, XPS

Examples of RIXS Studies

RIXS STUDY 1/2 CATALYTIC CONVERTERS A RIXS study about chemistry

What is a catalytic converter?

Today let's focus on the reference samples: Pt, PtO₂

Experimental Setup: Hard X-ray RIXS

The RIXS spectra really reflect the *k*-integrated convoluted occupied and unoccupied DOS! Pure 5d for Pt metal, and mixed Pt5d-O2p for PtO₂

Unoccupied VB * Occupied VB = <u>RIXS</u>, E loss constant

Unoccupied VB * Occupied VB = <u>RIXS</u>, E loss constant Occupied VB: <u>XES</u>, E photon constant (E loss drifts!)

RIXS is weaker in metals where conduction states are more delocalized, and lifetime of excited photoelectron in intermediate state is shorter

RIXS STUDY 2/2 High-T_C SUPERCONDUCTIVITY A RIXS study about physics

How It Began

1911: First Observation of Superconductivity, in Mercury (H.K. Onnes)

How It Took Off

1911 - ... : Conventional Superconductors

1986 - ... : Cuprates Superconductors (High- T_C)

2008 - ... : Iron-based Superconductors (High- T_C)

Superconductivity Is About Cooper Pairs

If these people were electrons, to superconduct they would need to form pairs like this

How Do Cooper Pairs Form In Cuprates?

AFM=AntiFerroMagnetic

Antiferromagnetic Interactions Likely At The Origin of Cooper Pair Formation In Cuprates: How do we Know?

Using RIXS To Detect Spin Excitations

Exploring the phase diagram of a superconductor with RIXS:

Phase diagram of La_{2-x}Sr_xCuO₄

а

experiment

Using RIXS To Detect Spin Excitations

Spin excitations found to persist in superconducting state!

Elastic peak Spin excitation

Using RIXS To Detect Spin Excitations

Dispersion of the spin excitation measured by RIXS:

Good agreement with Inelastic Neutron Scattering (INS). <u>RIXS can be used on small crystals</u> (beam size down to ~10 μ m nowadays)

Neutrons need BIG crystals, or a LOT of small ones:

Section 6:

RIXS at NSLS-II

The SIX Beamline at NSLS-II, and the Neighborhood at BNL

SIX in Four Words

 $\underline{S}OFT$ INELASTIC X-RAY SCATTERING

SIX in One Number

A Resolving Power Of

100,000

Ability to Distinguish Photons With a Difference in Energy of 0.001%

World-Wide Resolution Race in RIXS

RIXS Spectrum Shown for Different Energy Resolutions

SIX Needs To Be Looooong (100000)

Spectrometer: How Long is Long?

Commercial Spectrometer

Beamline: How Long is Long?

SIX is Too Long for NSLS-II Experimental Hall

The SIX Spectrometer Building

May 2013 - Start of contract August 2013 - Footings September 2013 - Floor slab

The SIX Spectrometer Building

The SIX Spectrometer Building

February 2014 - Weather Tight June 2014 - Complete

SIX UNDER CONSTRUCTION

- Converse

Optics Polishing for SIX Down to Atoms

SIX Needs To Be Stable

SIX Needs To Be Stable

Doing a RIXS experiment at SIX

Doing a RIXS experiment at SIX

First Light For SIX End of 2016

Questions?

