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Cryocrystallography basics
Why do we add cryoprotectants?

Ultrafast cooling — without cryoprotectants

Ultraslow cooling — without cryoprotectants!
Mechanisms of radiation damage

New opportunities for temperature controlled
studies of structure and dynamics



Cryocrystallography

Cooling protein crystals (and other biological
samples) to T~100 K reduces radiation damage
and extends sample lifetimes by ~102.

But cooling can cause:

 formation of crystalline ice
 disruption of structure and order
 degradation of diffraction properties

Temperature dependent measurements between 150
K and 250 are difficult.



Why does flash cooling create disorder?

Macromolecular crystals are 20-90% water.

Slow cooling: water transforms to hexagonal ice with a
9% specific volume increase.

Flash cooling below T ~150 K: water supercools into an
amorphous phase.

Pure water: vitrification only with cooling rates of 10° K/s
for drops <10 pum.

Cryoprotectants allow vitrification with smaller
cooling rates.



Proteins as cryoprotectants

* Proteins also reduce cooling rates required to achieve
vitrification (Sartor, Mayer et al., 1992).

Cooling rates for vitrification of hydrated lysozyme powders:
23-38% water (1st to 2nd hydration shell): <4 K/s
38-41%: <24 K/s

= Penetrating cryoprotectants necessary to prevent
Internal crystallization only in samples with high
solvent content or large solvent channels?



What happens to water
during flash cooling?

e Large specific volume change at 0°C eliminated.

Common assumption:

For amorphous ice, p(T~100 K) ~ 1 g/cm?3

Experiment:
For amorphous ice, p(77 K) ~ 0.94 g/cm?3 p/
For hexagonal ice, p(77 K) =~ 0.93 g/cm?
T
77K 273 K

. Flash cooling and slow cooling produce
comparable increases in water's low
temperature specific volume.



 Protein crystals are composite materials consisting of
Interpenetrating water and protein structures.

e Protein crystal unit cell volumes shrink by ~3-6% between
293 and 100 K, while solvent expands.

o Differential contraction of water and protein lattice
during cooling causes water to be expelled from some
regions and to accumulate in others

= variation in protein lattice constants.
= plastic failure of lattice.

= broadened mosaic.



Before
flash cooling:

During
flash cooling:

After
flash cooling:

e Darker shading = larger water concentration



Rocking image sequence
for a triclinic lysozyme crystal:




Fast versus Slow Cooling

All physico-chemical properties of protein crystals and their
constituents are temperature dependent

E.qg., cell volume, salt solubility, pH, protein conformation.

Very Fast Cooling

- no time for crystallization, relaxation and redistribution; only
specific volumes change.

Very Slow Cooling (assume no ice formation):

- sample remains in quasi-equilibrium as sample constituents
relax and redistribute, so low T state is homogeneous



Conventional Flash Cooling

Teng and Moffat, 1998:

N, stream: ~400 K/s;
Liquid nitrogen: ~400 K/s;
Liquid Propane: ~1000 K/s

Cooling times:
To below 220 K: ~0.2s
To T,=150 K: ~04s

We are in neither the slow nor fast cooling limit,
but in some messy intermediate regime!



How can we cool faster?

« Decrease sample volume V
Cooling rate ~ V12 ~ | -3/
1 mm to 20 um should give a factor of ~350

 Plunge in liquid rather than gas stream
~ factor of 20

 Plunge in liquid propane instead of nitrogen
~ factor of 2-4

* Increase plunge velocity in liquid
~ factor of 2

But: Comparable cooling rates and diffraction
outcomes with gas stream and liquid plunge
cooling observed.



WHY? A cold gas layer forms above
the liquid cryogen
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Ultra-Fast Cooling (“Hyperquenching”)

Remove the cold gas layer by blowing or sucking.

205K

cold layer of nitrogen

H

With gas layer:
dT/dt < 10° K/s (L<500 pum)

Remove the gas layer:

dT/dt =2 x 10* K/s (L~80 um)
~10° K/s (L~20 pm)



100 pm:
50 um:
10 pm:

Faster cooling =
Less cryoprotectant required to vitrify solvent.
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Ultra-Fast Cooling

20-1000 times faster than flash cooling — as fast as
state-of-the-art cryo-em cooling methods.

Successful cooling of all proteins (so far) to
T=100 K without penetrating cryoprotectants

More reliable and consistent cooling
Improved crystal order and diffraction (?)

More accurate trapping of room-temperature
structure (?)



What about Ultra-Slow Cooling?

- sample remains in quasi-equilibrium as sample constituents
relax and redistribute; low T state is homogeneous

Time for ice
nucleation
~107° s
at T=200 K

-need cooling rates
of 107 K/s

Time for ~5% Ice (s)
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Ice formation prevents structural studies
at 180 K < T <220 K

Tilton, Dewan and Petsko, 1992:
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Ice formation prevents structural studies

at 180 K < T

Chung and Parak,
2001
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Data collected on cooling from
T=300 K to T=100 K at 0.1 K/s

300 K & 255 K
Thaumatin

56% solvent

No penetrating
cryoprotectants




Cooling at 0.1 K/s

Urease
8% solvent

4.9 x108 A2 cell

No penetrating
cryoprotectants




No formation of crystalline ice inside the
crystal during cooling at 0.1 K/s

= Crystalline protein is as effective In
suppressing ice nucleation as a 70%
glycerol solution



Key:
Completely remove all surrounding solvent




Unit Cell Volume

Data collectionatall T
between 300 K and 100 K
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Slow Cooling & Variable Temperature Data

Collection: A General Method?

Protein Lowest Cryoprotective Mother
Mosaicity | Liguor Components
T=100 K

Insulin 0.06° 12.5 % (w/v) ethylene glycol

Urease 0.45° 1.6 M Li,SO,

Thaumatin 0.11° 1.5 M Na-K-Tartrate

Lysozyme 0.4° 1.2 M NaCl

Trypsin 0.9° 25 % (w/v) PEG 8000

0.2 M ammonium sulfate



Temperature Dependence of Radiation Damage
Thaumatin, no penetrating cryoprotectants
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Radiation Sensitivity (A2!MGy)

Activation Energies and Mechanisms of
Radiation Damage

T (K)
J33 250 200 167 w3 125 M0 100 9 Rapdiation sensitivity drops
' by a factor of 10 between
225 K and 160 K with
3 - | — E,~3.7 kcal/mol

0.01 |

NMR data for diffusion of
lysozyme hydration water:

E_~3.5-4.1 kcal/mol
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Urease
4.9 x10° A2 cell 4



On cooling



Structure versus temperature
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(A)

C RMSD to RT Structure
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Structure versus cooling rate
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B-Factor (A%

Structure versus cooling rate
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Summary

Differential contraction of solvent and protein creates
disorder on cooling.

Ultra-fast cooling using cold-gas removal

« allows most / all samples to be cooled without
cryoprotectants.

e Cah more accurately capture the room temperature
structure.

Ultra-slow cooling using external solvent removal
« allows many samples to be cooled without cryoprotectants.
e can yield improved low-temperature sample order.

 allows structural studies at arbitrary temperature;
conformational states and energy landscapes.



Broader Implications
 Cryopreservation: Art — Science
e Long term storage of protein solutions

 Cryopreservation of cells (sperm, egg, stem, ...)
and tissues



