Status and future of beamline control software at ESRF

E.Papillon,
Beamline Control Unit
ISDD
Instrument Services and Development Divisions

SOFTWARE GROUP
A. Goetz

Data Analysis Unit
C. Ferrero

Accelerator Control U.
JM. Chaize

Beamline Control Unit
L. Claustre

Beamline Control Unit (former BLISS)
Support and Development of beamline control software
29 ESRF and 12 CRG beamlines, 6 Laboratories
16 people
Outline

• Beamline control today:
 • Software architecture
 • Continuous scans
 • Fast 2D detectors
 • Graphical Interfaces

• Evolution
• Conclusion
Software overview

- USERS
- Beamline GUI / Online display
- SPEC
- TANGO / TANGO
- Linux / Windows drivers
- HARDWARE
Hardware overview:

Network

- Industrial PC / Linux
- VME + Bus Coupler
- ICEPAP motor controller
- Linux workstation
- Detectors
TACO / TANGO
Control of distributed hardware

TACO
- Developed at ESRF
- Obj. C / RPC
- Client and server API in C/python/matlab/labview/…
- Only commands

Widely used on beamlines:
- ~100 different servers
- 7000+ devices exported

TANGO
- Collaboration ESRF, Elettra, Soleil, ALBA, DESY
- C++ / CORBA
- Client and server API in C/C++/python/java
- Commands, attributes, properties
- Multi-thread
- Events support

All new servers in tango
What is SPEC for the beamline?

- Command Line Interface
- Main sequencer
- Handle diffractometers geometries
- Device controller:
 - *Integrated in SPEC*
 - *Taco interface*:
 - Motors / Counters
 - MCA / CCD
- Generic Interface to:
 - Serial Line
 - GPIB
 - Socket
 - Taco / Tango
SPEC macros

• Macro motors:
 • Physical: ICEPAP (socket), piezo (GPIB), …
 • Calculational: slit offset/gap, 3 legs table, …

• Macro counters:
 • Physical: eurotherm, lakeshore, …
 • Calculational: ratio, attenuators transmission, …

• Other Macros:
 • Other type of devices: beam shutters, filter box, …
 • New sequences: exafs scans, gap scans, …

→ Very flexible: many devices/sequences written
→ Limited data types, no debugger, no multi-threads
Continuous scans

• From Sequential
 - MOVE
 - EXPOSURE
 - READOUT
 - Time

• To Paralell
 - MOVE
 - EXPOSURE
 - READOUT
 - Time

• Practical Issues
 - Distributed System
 - Multiple detectors
 - Short exposure time

 • Synchronization
 • Data Buffering
Continuous scans: synchronization

- By software:
 - Synchro. with time: no wiring, good on single host
- By hardware:
 - Needs wiring, good for distributed hosts
 - Synchro. with time: P201, OPIOM boards
 - Need more: motor position, mixed time/position, ...

MUSST board

- Very flexible event generator
- 6 x input signals:
 - Digital counter
 - Analog
 - Positioning (motor steps and encoders)
- 16 x digital I/O
- Host Interface: GPIB
Continuous scans: data buffering

- **Software implementation**: **HOOK**
 - Kernel driver + TACO device server
 - Hardware readout + buffering
 - For In-house developed hardware
 - PCI and VME boards
 - Software event generator

- **Hardware implementation**: **MUSST**
 - Encoders, motor steps
 - Counters, ADC
 - Canberra MCA (ICB)

- **Data handling**:
 - SPEC polls data buffers
 - Counters / motors saved by SPEC
Continuous scans: detectors

- Canberra MCA (ICB)
 - Data buffering on MUSST
- XIA XMAP
 - PXI board – 4 channels
 - PXI/PCI bus coupler
 - External sync. Signal
 - 4MB memory / board
 - Data buffering in TACO

Spectras saved by device servers
Integrated ROIs transferred to SPEC (online plotting)

CONFIGURATION ISSUES
→ 10 ms / spectra
→ 1 ms / spectra (one board)

→ Configuration issues
→ No generic counter interface
2D detectors

- TACO CCD interface in SPEC
 - Many CCDs supported:
 - Princeton, Sensicam, PCO, Andor, Photonic Science, …
 - Standard macro set
 - Beam parameters, Multi-frame buffer, Parallel saving, …
 - Per device development

LIMA: Library for Image Acquisition

- Reuse of common code ⇒ generic procedures + interfaces
- Support recent fast detectors
2D detectors: LIMA

- Hardware layer
- Control layer
 - Software “features” fallback if hardware has limited capabilities:
 - RoI, Binning, Frame Accumulation
 - Basic processing and data reduction:
 - Beam parameters, RoI statistics, parallel saving, dark subtraction…
 - Specific data reduction algorithms through “plug-ins” (C++)
- Low level: C++ (multi-threaded)
- High level: C++ / Python (SIP)

- Generic TANGO interface + detector configuration
- Currently integrated: Pilatus, Frelon, Maxipix
2D detectors: ESPIA card

- Designed to interface the FReLoN 2k
- Collaboration \Rightarrow ESRF + SECAD, S.A.
- 2 Gbps fiber optic link (> 100 m)
- PCI 64 bits / 66 MHz
- $\sim 180\text{ MB/s}$ maximum data rate
- FOCLA: 2xCameraLink connectors

FReLoN HD (PSB-2)

2048 x 1024 @ 32 fps $\Rightarrow \sim 125\text{ MB/s}$
2D detectors: Medipix2 / Maxipix

- Pixel detector \Rightarrow photon counting
- 256 x 256 – 13 bit
- 0.3 ms readout time
- Max: 1400 fps \Rightarrow 180 MB/s

- Maxipix: Medipix2 array 5x1,2x2
- Image reconstruction in LIMA
 - 1000 fps \Rightarrow 650 MB/s

- ESPIA next generation:
 - PCI-Express 8x lanes
 - 4 fiber optic links @ 250 MB/s \Rightarrow 1 GB/s
Online Display

- Standalone tool for visualisation (python/Qt)
- Work online: use **SPEC** shared memory
- Work offline: specfiles, edf files, hdf files
Beamline GUI: BlissFramework

- Written in python/Qt – MVC architecture
- GUI application is made of “cemented” bricks
- Communication to SPEC: server mode
 - Socket interface
 - SpecClient python module
- First GUI: MxCube (MaxLab, Soleil, Bessy)
Beamline GUI: example
Beamline GUI: example
Evolution : on-going

- Common 2D detectors framework : LIMA
 - More detectors to come
 - New interface in spec
- More beamline GUI:
 - BlissFramework4 ready
 - First application : BioSaxsCube
- TANGO to replace TACO whenever possible
- Hardware upgrade : replace VME
Evolution

- Integrated beamline configuration tool
- Continuous scans
 - Easier integration on beamline
 - Easier integration of detectors

- New data format:
 - Specfiles + EDF Files ⇒ HDF5
- Experiment database: I SpyB ??

- keep SPEC ??
Evolution: alternatives to SPEC

- Evaluation of 3 control systems:
 - GDA (diamond)
 - Most advanced solution
 - SARDANA (alba)
 - Based on already used tools (python, qt, tango)
 - No beamline yet
 - In-house solution
Conclusion

• Keep improving existing system

• Maintain support of running beamlines

• Prepare new upgrade beamlines (start in 2011)

• Investigate new solutions
Thank you!
Continuous scans

- configuration
- start event
- HW trigger
- data buffering
- data polling
- datafiles

DISPLAY

SPEC

storage

XMAP TACO

HOOK PCI / VME boards

Motor Encoder

XMAP PXI crate
2D detectors: Camera Link

- **FOCLA module**
 - Connects to ESPIA
 - 2 X Camera Link connectors
 - Multiple pixel packing formats
 - Test image generator @ ~180 MB/s

- **Dalsa Pantera 1M60**
 - Frame transfer technology
 - 1024 x 1024 @ 60 fps ⇒ **120 MB/s**

- **Sarnoff CAM512**
 - 2 x 8 ADCs – 12 bit
 - 512 x 512 @ 300 fps ⇒ **150 MB/s**
 - 512 x 128 @ 500 fps ⇒ **125 MB/s**