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Abstract

* XBPM types and their application.
* XBPM pertormance.

* Use of single blades to judge the
quality of an XBPM reading.




Undulator and Bending XBPMs

Undulator XBPM:
4 blades arranged
like an X,
Tungsten blades

e

Bending XBPM:
4 parallel blades,
staggered by £A
Copper blades




Undulator XBPMs E§> (Ej

 Determination of horizontal and vertical
beam position.

 Beam position is estimated with
asymmetries:
— horizontal position £,

b2+ b4) — (b1 + b3) .
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— vertical position P,
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(b1 + b2) + (b3 + b4)
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Use of undulator XBPMs at the SLS

 One XBPM is used per beamline assuming
only angular beam motion.

— Feed forward tables: Correction of the gap
dependence of the XBPM reading.

— Only used to determine relative position
changes, which are used in a XBPM feedback.

» Approved performance: yrad.

— According to the C. Schulze (PX beamline) 25
um shift is accepted in 25 m distance from the
source point, 100 pym is not.



Bending XBPMs

 The monitors are constructed to detect vertical
beam positions only.

« The staggering of the blades results in self-
calibrated readings under the assumption of:
P~P__=c-a,+A=c-a,—-A

asym
with P the real position, a3 = E;E ) Ay = —E;Ej




Bending XBPMs at the SLS

 Two XBPMs are used to determine angle
and position of the beam.

-> Higher demands on accuracy.

XBPM1 XBPM2

source point & real beam error bars
error bars 'Qrection for XBPM?2

source
point

Source point errors are enhanced due to the
lever arm from XBPM1 to the source point.



Schematic beamline design
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Calibration factor

Calibration factors and Sum signal
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calibration factor

Symmetrical and asymmetrical
calibration factors are different
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Single blade signals
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->No obvious shadowing. Almost linear dependence
of the blade signals on orbit bumps.
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Single blade signals
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—->No obvious shadowing. Almost linear dependence

of the blade signals on orbit bumps.



Horizontal Bumps have an influence
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- The blades react as if we had driven a vertical bump!



Results of the calibration tests

» Auto-calibration of bending XBPMs
doesn’t work.

* The absolute reading of an XBPM is
doubtable. At a given working point, small
position changes still can be determined
and used in a feedback.

* Single blades can be used individually.



One XBPM = four blades = four
monitors

» Correct known systematic effects.

— In our case: normalize the blade signals b; with the
storage ring current I : b,;=b;/ 1, wherei=1,...,4

* |dentify a certain blade signal with an
according beam position.

— The bigger the signal the closer the beam.

» Calibrate the single blades:




What can we do with four results?

* |gnore those blades that make problems.
Only use the ,good blades“ to estimate the
beam position, for example:

arith — 5 i
443



We can do even more

 Calculate standard deviations!

using all
blades

using bladel
and blade3




Why we look at single blade signals
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- The single blades behave differently.



Bending XBPM feedback run (I)
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- Beam was shifted towards blade3, blade4 by ~40 um
through the XBPM feedback. P was kept constant.
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The use of standard deviations
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- Correlation between vacuum pressure and standard
deviation of the XBPM reading.
- XBPM design was not UHV compatible. (Problem fixed now.)



Advantages using single blades

* One gets four results instead of one.

» Signal quality can be taken into account.
— "Bad” blades can be excluded.

 Standard deviations can be calculated.

— One can judge if the accuracy of the XBPM
readings is sufficient to improve beam
stabllity.

* No need for bias voltage:



Blade behavior on different bias
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- Changing of the blade signals on orbit bumps doesn’t
depend on the bias voltage. (But the use of P, (A/2)
would be critical due to a potential division by zero.)



Bending XBPM feedback run (ll)
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- In case of thermal equilibrium, residual drifts of the beam
position and remaining XBPM artifacts are + equal at the SLS.



Bending XBPM feedback run (llI)
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- Additional beam motion in the marked range expected
and corrected.



Conclusion

* Use of single blades as individual monitors
can reveal different etfects.

- Vacuum pressure dependence of the readings.
® Problem is fixed now. Stabilizing plate on the backside

of the XBPMs has avoided ventilation.
— Pertormance of clean bending XBPMs in the
order of some micron over 1-2 day(s).
* Undulator XBPMs are in use for a long time

yet.

— Detailed investigation of technical properties of
undulator XBPM is more ditticult due to gap

dependence and two-dimensional position




