Multimodal In Situ X-ray and Electron Microscopy Reveals Temperature-Dependent Corrosion Mechanisms of Ni-20Cr Alloy in Molten Salt

Xiaoyang Liu, Kaustubh Bowane², Arthur Ronne³, Lin-Chieh Yu¹,³, Mingyuan Ge⁴, Phillip Halstenberg³, Xianghui Xiao⁴, Shannon Mahurin⁵, Sheng Dai⁴,⁶, Wah-Keat Lee⁷, Lingfeng He⁸, Yu-chen Karen Chen-Wiegart¹,⁴

1 Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States; 2 Advanced Characterization Department, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States; 3 Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States; 4 National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11793, United States; 5 Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, United States; 6 Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States

Introduction

Understanding alloy behavior in molten salt environments plays an important role in developing sustainable energy systems. Specifically, a molten salt reactor (MSR) is considered as a safe and efficient nuclear power plant. However, due to the lack of oxide-based passivation and selective dissolution of alloy elements, the corrosion of structural materials arises safety and maintenance concerns. Previous studies showed the electrochemical dissolution of Cr in molten chloride salts forms cracks or voids due to the inevitable contaminations (H₂O and O₂) and the hygroscopic nature of the salt such as MgCl₂. There is a strong motivation to observe the real-time morphology change of the alloys in molten salt which is significant to better understand the interplay between the mass transport in the alloys and the salts, and the electrochemical reaction and the diffusion at the salt-metal interface. Additionally, the corrosion behavior varies because of the existence of the temperature gradient in the molten salt flow loop. This work used Ni-20Cr alloy and molten KCl-MgCl₂ (50-50 mol.%) as a model system to study the influence of temperature on the molten salt corrosion characterized by in situ synchrotron X-ray nanotomography and transmission electron microscopy without cleaning and air-exposure to preserve the chemical states.

Experiment Setup

In situ synchrotron X-ray nanotomography experiment was conducted in the full-field X-ray imaging beamline (FX, 18-ID) with a microfocus X-ray source at National Synchrotron Light Source II (NSLS-II). The Ni-20Cr and MgCl₂-KCl were sealed in double cavity in Ar-filled glovebox. The temperatures were 500, 600, and 800°C. The same samples were characterized by transmission electron microscopy without contacting the air or water at Idaho National Laboratory.

3D Morphology Evolution at Varied Temperatures

- **500°C**
 - Core (Cr)-shell (Ni) structure formed after corrosion
 - Cr dissolution formed Cr²⁺ in the salt

Local Morphological Change

- Corrosion occurs at the salt-metal interfaces in all three temperatures
- Grain boundary corrosion was observed at 500 and 600°C
- At 800°C, the morphological evolution in molten salt corrosion is similar to the one in a percolation deaingloying, forming a bicontinuous porous structure
- Corrosion progresses into the grains, forming larger voids and cracks along grain boundaries

Elemental Distribution and Chemical Oxidation - 600°C

- Time-dependent development of corrosion mechanism

Summary and Future Work

- At lower temperatures (500-600°C), while the reaction starts as a grain boundary corrosion, with a prolonged reaction time under an elevated temperature, the molten salt corrosion propagates into the grains
- A bicontinuous porous structure formed at a higher temperature (800°C), following the percolation deaingloying mechanism
- A core-shell structure formed in the alloys after corrosion, with an enriched Ni surface
- The Cr²⁺ species formed after corrosion
- Further analysis is underway to discern the kinetics mechanisms and the interplay between the mass transport (long-range and surface diffusion) and the chemical reaction in molten salt corrosion and how they may lead to the formation of different morphologies

Acknowledgments

This work was supported as part of the Molten Salts in Extreme Environments (MSEE) Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, BNL, and ORNL, and supported through DOE contracts DE-SC0021794 and DE-AC02-08CH10886. Work at Stony Brook University was supported by MSEE through a subcontract from BNL. This research used resources and the full-field X-ray imaging (FX, 18-ID) beamline of the National Synchrotron Light Source II (NSLS-II), a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract DE-SC0021794.

References