Analytics for High Frame-rate Image Streaming

Chiwoo Park, Florida State University

August 2017 at New York Scientific Data Summit
Many scientific studies have been relying on a stream of imagery observations.

- Ex 1. *in situ* microscopy of nanoparticle self-assembly
Many scientific studies have been relying on a stream of imagery observations.

- Ex 2. *Operando electrochemical* STEM of Li-ion battery
Many scientific studies have been relying on a stream of imagery observations.

- Ex 3. Remote sensing imagery (photo credit: Planet lab)

![Wildfire at Nevada]

- July 2 2017
- July 4 2017
- July 5 2017

![Flooding in California]

- Dec 20 2016
- Jan 26 2017
- Feb 22 2017
Amount of images collected each time is huge.

- **in situ microscopy**: small-scale changes occur in a short time scale. Capturing such fast changes would need high frame-rate measurements.

 Data rate = 16MBs per image \times 1000 \text{ images per sec.}
 \[= 16GBs \text{ per sec} \]

- **Planet lab's constellation of 88 satellites**: each collects over 2 million km^2 per day with a resolution of 3-5 meters.

 Data rate = 88 \times (2 \times 10^6 \text{ km}^2 \text{ per day} \times 40,000 \text{ pixels per km}^2)
 \[\approx 20 \text{ million GBs per day.} \]
 \[\approx 230 \text{ GBs per sec.} \]
In situ analysis is typically preferred for high data rates.

- limited network bandwidth
 e.g. local disk writing ≈ 100 to 600 MBs per sec.
 e.g. satellite to ground station ≈ 200 MBs per sec.

- time-to-analysis requirement
 It takes too much time for data transfer, storage and batch processing.

 In situ analysis enables realtime or near realtime analysis of data.
Today we present an approach for *in situ* analysis of high frame-rate imagery observations.

The new approach aims for near real-time analysis of

- **Detect Changes**: locate visual changes, e.g. appearance or disappearance of objects, morphology changes, color changes, texture changes,...

- **Track Changes**: associate visual changes obtained at various instances to form a track

- **Find Longitudinal Patterns**: find long-time range patterns in tracked changes.
Robust Change Detection
Formulating change detection

Let Y_t denote a $m \times n$ matrix representing an input image obtained at time t. The input matrix can be decomposed into three component matrices of the same size,

\[
Y_t = B_t (\text{background}) + F_t (\text{changes}) + E_t (\text{random var.})
\]

We want to estimate F_t.

When B is assumed unchanged,

The likelihood maximization for F_t can be pursued.

Minimize $B, \{F_t\}$ \[
\sum_{t=1}^{T} \|E_t\|_F^2
\]

$Y_t = B + F_t + E_t$, $t = 1, \ldots, T$.

$\|F_t\|_1 \leq \mu$: F_t is sparse.

This is a batch processing to fit F_t all together. Since more data are used, this provides more robust estimates when B does not change in time, since less data are used.
When local changes of background is expected,

Local weights ω_t can be posed for local likelihood maximization. For each time t',

$$\text{Minimize}_{B,F_t} \sum_{t=t'-\delta}^{t'+\delta} \omega_t ||E_t||_F^2$$

$$Y_t = B + F_t + E_t, t = t' - \delta, ..., t + \delta.$$

- B might change in time.
- $||F_t||_1 \leq \mu$.

δ dilemma: timeliness vs. robustness of estimation
- $\delta = T$: batch processing, more robust
- $0 < \delta < T$: grouped processing, less robust
- $\delta = 0$: frame-by-frame processing, least robust
Can we maintain robustness of estimation for \(\delta = 0 \)?

Degradation of robustness with small \(\delta \) can be made up using prior knowledge on \(B \) in the form of a cost function, \(\mathbb{J}(B) \).

- Example: Background is very simple and smooth for many microscope images. \(\mathbb{J}(B) \) can be a smoothness measure.
Can we maintain robustness for $\delta = 0$?

Use that prior knowledge on B to improve robustness of estimation.

First trial: For each time t, optimize the regularized local likelihood

\[
\text{Minimize}_{B,F_t} \quad \|E_t\|_F^2 + \lambda J(B) \\
Y_t = B + F_t + E_t.
\]

\[
\|F_t\|_1 \leq \mu.
\]

- B may be better guided by the prior cost function.
The trial gave a poor estimate.

- $\delta = 0$ case is not robust yet. The estimation of B is quite affected by F_t and E_t.

![Graphs](image-url)
The trial gave a poor estimate.

- The increase of the weight on the prior cost (i.e. λ) can cause significant biases.
We borrow the concept of robust regression in statistics to increase the robustness.

In statistics, the tendency of the square loss $\|E_t\|^2$ being dominated by outliers (such as sudden changes) was discussed and addressed by changing it with the robust loss function, e.g. the Huber loss, \mathbb{L}_H,

$$\text{Minimize } \mathbb{L}_H(E_t) + \lambda J(B)$$

$$Y = B + F_t + E_t$$

$$\|F_t\|_1 \leq \mu.$$

The estimated B is less sensitive to the choice of F_t and E_t. The solution approach of the estimation can be found at our paper Vo and Park (2016).
High Contrast Example (Gold NP)

(a) original
(d) foreground detections
High Contrast Example (Gold NP): Output

(a) original

(b) background est.

(c) foreground est.

(d) foreground detections
High Contrast Example (Silver NP)

(a) original
High Contrast Example (Silver NP): Output
High Contrast Example (Silver NP): Output

(a) original

(b) background est

(c) foreground est

(d) particle detection
Medium Contrast Example (Silver NP)

(a) original
Medium Contrast Example (Silver NP): Output

(d) foreground detections
Medium Contrast Example (Silver NP): Output

(a) original

(b) background est.

(c) foreground est.

(d) foreground detections
Low Contrast Example (Protein)

(a) original
Low Contrast Example (Protein): Output

(d) aggregate detection
Low Contrast Example (Protein): Output

(a) original
(b) background estimated
(c) foreground estimated
(d) aggregate detection
Low Contrast Example (Micelle)

(a) original
Low Contrast Example (Micelle): Output
Low Contrast Example (Micelle): Output
Low Contrast Example (NP)

(a) original
Low Contrast Example (NP): Output

(d) foreground detections
Low Contrast Example (NP): Output

(a) original

(b) background est.

(c) foreground est.

(d) foreground detections
Some Other Examples

(a) input image
(b) estimated background
(c) estimated foreground
Track Changes
Associate visual changes obtained at various instances to form a track.

The association is represented as a digraph $G = (V, E)$, where $v \in V$ is a node representing a visual change, and $e \in E$ is an edge.
An association $a \in A$ is not only an edge but also a collection of edges,

1. **Change** by 1-to-1 association $e \in E$
2. **Merge** by m-to-1 associations $\{ e \in E : \text{sink}(e) = v \}$
3. **Split** by 1-to-n associations $\{ e \in E : \text{source}(e) = v \}$
4. **Appear** by an edge from a source node.
5. **Disappear** by an edge from a sink node.
Data association problem is a problem of finding G that minimizes the total association cost.

Minimize $\sum_{a \in A} c_a \cdot z_a$

$z_a \in \{0, 1\}$

$\{z_a; a \in A\} \in C$.

- $z_a \in \{0, 1\}$ represents the activation of $a \in A$.
- c_a is the cost of the activation.
Only 1-to-1 associations were considered in literature. A few exceptions are

- Jaqaman et al. (2008) and Henriques et al. (2011) studied some linear optimization models to consider one-to-two or two-to-one associations.
- Khan et al. (2005a,b); Kreucher et al. (2005); Ng et al. (2007) studied some sequential Monte Carlo approaches. As the number of foreground objects increases, the state space becomes high dimensional, so the approaches are not scaling very well.
We formulate and solve a general data association problem

Model Assumptions

M-way association: The number of foreground objects involved in an association is at least 1 and at most \(M \).

Imperfect detection: A foreground detection algorithm is not perfect. Some \(v \in V \) can be faulty detections.
Binary integer programming problem can be formulated and solved.

The objective is to minimize the total cost of associations

$$\text{Min} \sum_{a \in A_{1,1}} z_a c_a + \sum_{a \in A_{m,1}} z_a c_a + \sum_{a \in A_{1,n}} z_a c_a + \sum_{a \in A_{m,n}} z_a c_a$$

subject to

- In-Degree Constraint for node v: $1 \leq \sum_{\text{source}(e) = v} z_e \leq M$
- Out-Degree Constraint for node v: $1 \leq \sum_{\text{sink}(e) = v} z_e \leq M$
- Relationship between z_e and z_a:

 $$z_a \leq z_{e'} \text{ for } e' \in a$$

 $$\sum_{e' \in a} (z_{e'} - 1) + 1 \leq z_a.$$
Using vector notations,

Minimize $\mathbf{c}_1^T \mathbf{z}_1 + \sum_m \mathbf{c}_{m1}^T \mathbf{z}_{m1} + \sum_n \mathbf{c}_{n2}^T \mathbf{z}_{n2} + \sum_{m,n} \mathbf{d}_{mn}^T \mathbf{y}_{mn}$

$\mathbf{A}_1 \mathbf{z}_1 \geq \mathbf{b}_1$
(1a)

$\mathbf{A}_{m1} \mathbf{z}_1 + \mathbf{B}_{m1} \mathbf{z}_{m1} \geq \mathbf{b}_{m1}$
(1b)

$\mathbf{A}_{n2} \mathbf{z}_1 + \mathbf{C}_{n1} \mathbf{z}_{n2} \geq \mathbf{b}_{n2}$
(1c)

$\mathbf{P}_{mn} \mathbf{z}_{m1} + \mathbf{Q}_{mn} \mathbf{z}_{n2} + \mathbf{y}_{mn} \geq 1$
(1d)

$\mathbf{P}_{mn} \mathbf{z}_{m1} - \mathbf{y}_{mn} \geq 0$
(1e)

$\mathbf{Q}_{mn} \mathbf{z}_{n2} - \mathbf{y}_{mn} \geq 0$
(1f)

$\mathbf{z}_1 \in \mathcal{B}^{p_1}, \mathbf{z}_{m1} \in \mathcal{B}^{p_{m1}}, \mathbf{z}_{n2} \in \mathcal{B}^{p_{n2}}, \mathbf{y}_{mn} \in \mathcal{B}^{q_{mn}}$
Batch Solution: We solve the Lagrange dual relaxation of the BIP.

Solving the binary optimization problem is NP-hard! We used the special structure of the problem to find an integer-valued suboptimal.

Minimize \[c_1^T z_1 + \sum_m c_{m1}^T z_{m1} + \sum_n c_{n2}^T z_{n2} + \sum_{m,n} d_{mn}^T y_{mn} \]

\[A_1 z_1 \]
\[A_{m1} z_1 + B_{m1} z_{m1} \]
\[A_{n2} z_1 + C_{n1} z_{n2} \]
\[P_{mn} z_{m1} + Q_{mn} z_{n2} + y_{mn} \geq 1 \] (1d)
\[-y_{mn} \geq 0 \] (1e)
\[y_{mn} \geq 0 \] (1f)

Totally Unimodular!

\[z_1 \in B^{p_1}, z_{m1} \in B^{p_{m1}}, z_{n2} \in B^{p_{n2}}, y_{mn} \in B^{q_{mn}} \]
Batch Solution: We solve the Lagrange dual relaxation of the BIP.

Repeat (SP) and (MP) until convergence.

(SP) Solve for \(z_1, z_{m1}, z_{n2}, y_{mn} \) with fixed Lagrange multipliers.

\[
\begin{align*}
\text{Min} & \quad c_1^T z_1 + \sum_m c_{m1}^T z_{m1} + \sum_n c_{n2}^T z_{n2} + \sum_{m,n} d_{mn}^T y_{mn} \\
& + \sum_m \lambda_{m1}^T (b_{m1} - A_{m1} z_1 - B_{m1} z_{m1}) \\
& + \sum_n \lambda_{n2}^T (b_{n2} - A_{n2} z_1 - B_{n2} z_{n2}) \\
A_1 z_1 & \geq b_1 \\
P_{mn} z_{m1} + Q_{mn} z_{n2} & + y_{mn} \geq 1 \\
P_{mn} z_{m1} & - y_{mn} \geq 0 \\
Q_{mn} z_{n2} & - y_{mn} \geq 0 \\
0 \leq z_1, z_{m1}, z_{n2}, y_{mn} \leq 1
\end{align*}
\]

(MP) Improve the Lagrange multipliers \(\lambda_{m1}, \lambda_{n2} \geq 0 \):

\[
\begin{align*}
\text{Max} & \quad \sum_m \lambda_{m1}^T (b_{m1} - A_{m1} z_1^* - B_{m1} z_{m1}^*) + \sum_n \lambda_{n2}^T (b_{n2} - A_{n2} z_1^* - B_{n2} z_{n2}^*)
\end{align*}
\]
Near realtime solution

The previous solution approach associates all image frames in one step.
- **Pros**: It pursues for global optimality.
- **Cons**: This is a batch processing so far from realtime processing.

Near realtime solution can be sought by solving the BIP in a frame-by-frame fashion.
- **Cons**: When miss detections or faulty detections occur, the frame-by-frame association incurs significant fragmentations in traces.
- **We combined the frame-by-frame data association with delayed data association strategy to fix this issue.**
Demonstration (Real Case)

Solution phase silver nanoparticle growth was imaged by *in situ* transmission electron microscopy for 89 seconds.
Demonstration (Real Case)

We applied our method to track particle interactions; Evaluated the accuracy of the data association over the manually inspected 18 trajectories.
Demonstration (Real Case)

The data association errors were evaluated against the manually inspected 18 trajectories.

<table>
<thead>
<tr>
<th>Type</th>
<th>Our method</th>
<th>Henrique</th>
<th>Jaqaman</th>
<th>Yu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FN</td>
<td>FP</td>
<td>FN</td>
<td>FP</td>
</tr>
<tr>
<td>1-to-1</td>
<td>0.033</td>
<td>0.038</td>
<td>0.086</td>
<td>0.061</td>
</tr>
<tr>
<td>1-to-m</td>
<td>0.020</td>
<td>0.109</td>
<td>0.100</td>
<td>0.167</td>
</tr>
<tr>
<td>n-to-1</td>
<td>0.035</td>
<td>0.098</td>
<td>0.114</td>
<td>0.137</td>
</tr>
<tr>
<td>Faulty</td>
<td>0.000</td>
<td>0.001</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>Birth</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.750</td>
</tr>
<tr>
<td>Death</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Table: Real Microscope Data - Data association errors of our method with $M = 3$, Henriques et al. (2011), Jaqaman et al. (2008), and Yu and Medioni (2009).
The proposed approach has been successfully applied to support high impact science research.
Examples of Applications
Broad use in microscopy

- National Center for Electron Microscopy
- LBNL
- ANL
- PNNL
- BNL
- Oxford
- STFC
- UC Davis
- SNL
- FSU
- Electron Microscopy Center
- Computing
- Center for Functional NanoMaterials
- ATLAS Computing
- Data Mining Research Group
- Powering by:
 - Hopper
 - Environmental Molecular Science Laboratory
 - Olympus
 - STEM Group
 - SuperSTEM
 - Electron Imaging Facility
 - Center for Integrated Nanotechnologies
Closing Remarks

- Be able to analyze very low contrast images at the rate of ten images per second.
- This corresponds to processing rate of 160 MB per second.
- Be able to analyze moderate speed process in real-time.
- Burning a hardware logic for acceleration may help further increase the processing rate.
Thanks for general supports!

