Multilevel Optimization for Multi-Modal X-ray Data Analysis

Zichao (Wendy) Di

Mathematics & Computer Science Division
Argonne National Laboratory

August 8, 2017
Outline

Multi-Modality Imaging
 Example: X-ray Tomography
 Forward Model
 Optimization Algorithms
 Numerical Results

Multilevel-Based Acceleration
 Other Applications of Multilevel Methods
 Introduction of MG/OPT
 Application of Multilevel in Tomographic Reconstruction
 Numerical Results

Summary and Outlook
Outline

Multi-Modality Imaging
 Example: X-ray Tomography
 Forward Model
 Optimization Algorithms
 Numerical Results

Multilevel-Based Acceleration
 Other Applications of Multilevel Methods
 Introduction of MG/OPT
 Application of Multilevel in Tomographic Reconstruction
 Numerical Results

Summary and Outlook
More is Better

CT: hard-tissue; T2(MRI): soft tissue; PET: functional characteristics

Boss, A. and et al. (2010). Hybrid PET/MRI of Intracranial Masses: Initial Experiences and Comparison to PET/CT, JNM
Outline

Multi-Modality Imaging
 Example: X-ray Tomography
 Forward Model
 Optimization Algorithms
 Numerical Results

Multilevel-Based Acceleration

Summary and Outlook
Tomographic Image Reconstruction

- Non-invasive imaging technique to visualize internal structures of object.

- **Tomography applications**: physics, chemistry, astronomy, geophysics, medicine, etc.

- **Tomographic imaging modalities**: X-ray transmission, ultrasound, magnetic resonance, X-ray fluorescence, etc.

- **Task**: estimate distribution of physical quantities in sample from measurements.

- Limited angle tomography reconstruction is naturally ill-conditioned.
Schematic Experimental Setup with Two Modalities

[Diagram of X-ray Source, Sample, and XRT sinogram with XRF Spectra]
Reconstruction Approaches

▶ Traditional: filtered backprojection
 ▶ Restricted to simple tomographic model
 ▶ Requires a large number of projections

▶ Alternatively, iterative reconstruction from single data modality
 ▶ Requires much less data acquisition, results in higher accuracy

Our Goal:
Formulate a joint inversion integrating XRF and XRT data to improve the reconstruction quality of elemental map.
Outline

Multi-Modality Imaging
 Example: X-ray Tomography
Forward Model
 Optimization Algorithms
 Numerical Results
Multilevel-Based Acceleration
Summary and Outlook
Traditionally, the XRT projection of the object from beam line \((\theta, \tau)\) is modeled as

\[
F_{\theta,\tau}^{T}(\tilde{\mu}^E) = I_0 \exp \left\{ - \sum_v L_v \tilde{\mu}_v^E \right\}.
\]

to directly solve the linear attenuation coefficient \(\tilde{\mu}_v^E\) for each voxel \(v\),

In our approach, notice

\[
\tilde{\mu}_v^E = \sum_e \mathcal{W}_{v,e} \mu_e^E,
\]

\[
F_{\theta,\tau}^{T}(\mathcal{W}) = I_0 \exp \left\{ - \sum_{v,e} L_v \mu_e^E \mathcal{W}_{v,e} \right\}
\]

- \(I_0\): incident photon flux
- \(\mu_e^E\): mass attenuation coefficient of element \(e \in \mathcal{E}\) at beam incident energy \(E\)
- \(\mathcal{W} = \mathcal{W}_{v,e}\): tensor denoting how much of element \(e\) is in voxel \(v\)
- \(L = [L_v]\): tensor of intersection length of beam line \((\theta, \tau)\) with the voxel \(v\)
X-ray Fluorescence (XRF)
Mathematical Model of XRF

First, we obtain the unit fluorescence spectrum

\[M_e = F^{-1} \left(F(I_e) * F \left(\frac{1}{\sigma \sqrt{2\pi}} \exp \left\{ -\frac{x^2}{2\sigma^2} \right\} \right) \right) \]

Then, the XRF spectrum, \(F_{\theta,\tau}^R \)

\[
= \sum_{v,e,d} \frac{L_v \mathcal{W}_{v,e} M_e}{n_d} \exp \left\{ -\sum_{v',e'} \mathcal{W}_{v',e'} \left(\mu_{E_e}^E L_{v'} \mathbb{I}_{v' \in U_v} + \mu_{E_e}^E P_{v,v',d} \right) \right\}
\]

\(P = [P_{v,v',d}] \): tensor of intersection length of fluorescence detectorlet path \(d \) with the voxel \(v' \)
Outline

Multi-Modality Imaging
 Example: X-ray Tomography
 Forward Model
 Optimization Algorithms
 Numerical Results

Multilevel-Based Acceleration

Summary and Outlook
Resulting Optimization: Joint Reconstruction (JRT)

Goal:

Find \mathbf{W} so that $\mathbf{F}^{R}_{\theta,\tau}(\mathbf{W}) = \mathbf{D}^{R}_{\theta,\tau}$ and $\mathbf{F}^{T}_{\theta,\tau}(\mathbf{W}) = \mathbf{D}^{T}_{\theta,\tau}$

$$
\min_{\mathbf{W} \geq 0} \phi(\mathbf{W}) = \sum_{\theta,\tau} \left(\frac{1}{2} \left\| \mathbf{F}^{R}_{\theta,\tau}(\mathbf{W}) - \mathbf{D}^{R}_{\theta,\tau} \right\|^2 + \frac{\beta_1}{2} \left\| \mathbf{F}^{T}_{\theta,\tau}(\mathbf{W}) - \beta_2 \mathbf{D}^{T}_{\theta,\tau} \right\|^2 \right)
$$

where

- $\mathbf{D}^{R}_{\theta,\tau} \in \mathbb{R}^{n_E}$: measurement data of XRF signal detected at angle θ from light beam τ

- $\mathbf{D}^{T}_{\theta,\tau} \in \mathbb{R}$: the measurement data of XRT signal detected at angle θ from light beam τ

- $\beta_1, \beta_2 > 0$ are scaling parameters to balance the ability of each modality to fit the data, and detect the relative variability between the data sources.

Note: Optimization differs on how $\mathbf{F}^{R}_{\theta,\tau}$ and $\mathbf{F}^{T}_{\theta,\tau}$ are combined
How Multimodality Can Help

Consider an **overdetermined** (more equations than the number of unknowns) but **rank deficient** system which has an infinitude of solutions:

\[
\begin{bmatrix}
1 & 2 \\
2 & 4 \\
0.5 & 1 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\end{bmatrix} =
\begin{bmatrix}
1 \\
2 \\
0.5 \\
\end{bmatrix}
\]

Another such rank-deficient (not full-rank) system:

\[
\begin{bmatrix}
2 & 3 \\
4 & 6 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\end{bmatrix} =
\begin{bmatrix}
1.5 \\
3 \\
\end{bmatrix}
\]

However, combine these two can form a **full rank** and **consistent** system with a unique solution \(x \)

\[
\begin{bmatrix}
1 & 2 \\
2 & 4 \\
0.5 & 1 \\
2 & 3 \\
4 & 6 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\end{bmatrix} =
\begin{bmatrix}
1 \\
2 \\
0.5 \\
1.5 \\
3 \\
\end{bmatrix}
\]
In experiments, we use truncated-Newton (TN) method with preconditioned conjugate gradient (PCG) to provide a search direction:

- To satisfy the bound constraints, the projected PCG is applied to the reduced Newton system
- One TN iteration typically requires $\kappa(O(10))$ PCG iterations

Main expense of each outer iteration is $\kappa + 2$ function-gradient evaluations.
Outline

Multi-Modality Imaging
 Example: X-ray Tomography
 Forward Model
 Optimization Algorithms
 Numerical Results

Multilevel-Based Acceleration

Summary and Outlook
JRT versus Single XRF Reconstruction (Synthetic)1

Element Unit: $g/\mu m^2$

1Di, Leyffer, and Wild (2016). An Optimization-Based Approach for Tomographic Inversion from Multiple Data Modalities, SIAMIS
Convergence

![Reconstruction error vs. Number of f,g evaluations](chart1)

![XRF residual](chart2)
Addressing Self-Absorption Effect

Sample: Solid glassrod (Silicon) with 2 wires (Tungsten, Gold).

\(^1\) Di and et al. (2017). Joint reconstruction of x-ray fluorescence and transmission tomography, Optics Express
Outline

Multi-Modality Imaging
 Example: X-ray Tomography
 Forward Model
 Optimization Algorithms
 Numerical Results

Multilevel-Based Acceleration
 Other Applications of Multilevel Methods
 Introduction of MG/OPT
 Application of Multilevel in Tomographic Reconstruction
 Numerical Results

Summary and Outlook
Motivation

\[N = 9^2, \text{flops} = 2 \times 10^7 \]
\[N = 5^2, \text{flops} = 6 \times 10^6 \]
\[N = 3^2, \text{flops} = 3 \times 10^6 \]
\[N = 2^2, \text{flops} = 8 \times 10^5 \]
Outline

Multi-Modality Imaging

Multilevel-Based Acceleration
Other Applications of Multilevel Methods
Introduction of MG/OPT
Application of Multilevel in Tomographic Reconstruction
Numerical Results

Summary and Outlook
Multilevel Acceleration of Image Registration

Single Level: 150 sec

Multilevel: 10 sec

Level 1: 50 x 50

Level 2: 25 x 25

Level 3: 13 x 13

Level 4: 7 x 7
Outline

Multi-Modality Imaging

Multilevel-Based Acceleration
 Other Applications of Multilevel Methods
 Introduction of MG/OPT
 Application of Multilevel in Tomographic Reconstruction
 Numerical Results

Summary and Outlook
Introduction of MG/OPT

- Multigrid optimization algorithm (MG/OPT) is a general framework to accelerate a traditional optimization algorithm\(^1\).

- Recursively use coarse problems to generate search directions for fine problems.

- MG/OPT can deal with more general problems in an optimization perspective, in particular, it is able to handle inequality constraints in a natural way.

- Multiple options to design the hierarchy of the problem:
 - through image space.
 - through data space.

\(^1\)Nash, S. G. (2000). *A Multigrid Approach to Discretized Optimization Problems, OMS*
MG/OPT

Given:

- High-resolution model $f_h(z_h)$, easier-to-solve low-resolution model $f_H(z_H)$
- $z^+ \leftarrow \text{OPT}(f(z), \bar{z}, k)$
- A restriction operator I^H_h and an interpolation operator I^h_H
- An initial estimate z^0_h of the solution z^*_h on the fine level
- Integers k_1 and k_2 satisfying $k_1 + k_2 > 0$
Outline

Multi-Modality Imaging

Multilevel-Based Acceleration
 Other Applications of Multilevel Methods
 Introduction of MG/OPT
 Application of Multilevel in Tomographic Reconstruction
 Numerical Results

Summary and Outlook
Interpolation/Restriction Operators

- Restriction on 2D parameter $\mathbf{W}_h \in \mathbb{R}^2$ to produce $\bar{\mathbf{W}}_H$ using full weighted matrix:

- Restriction on gradient $\hat{I}^H_h = C I^H_h$ where C balances the order difference between $\phi_h(\bar{\mathbf{W}}_h)$ and $\phi_H(I^H_h \bar{\mathbf{W}}_h)$

- Interpolation operator: $I^H_H = 4(I^H_h)^T$.
Coarse Grid Surrogate Model

- Shift experimental data for coarse level:
 \[
 \tilde{D}_{\theta,\tau} = D_{\theta,\tau} - (F_{\theta,\tau}^h(\tilde{W}_h) - F_{\theta,\tau}^H(I_h^H\tilde{W}_h))
 \]

The surrogate model:

\[
\tilde{\phi}_H(W_H) = \sum_{\theta,\tau} \left(\frac{1}{2} \left\| F_{\theta,\tau}^H(W_H) - \tilde{D}_{\theta,\tau} \right\|^2 \right) - \left(\nabla \phi_H(I_h^H\tilde{W}_h) - I_h^H\nabla \phi_H(\tilde{W}_h) \right)^T W_H
\]
Outline

Multi-Modality Imaging

Multilevel-Based Acceleration
 Other Applications of Multilevel Methods
 Introduction of MG/OPT
 Application of Multilevel in Tomographic Reconstruction
 Numerical Results

Summary and Outlook
MG/OPT Search Directions versus Error

Problem Size: [33 17]
2-level MG/OPT Reconstruction

![Graph showing the reconstruction error reduction against the equivalent number of f-g evaluations. The graph compares single level and multigrid methods.]
Outline

Multi-Modality Imaging
 Example: X-ray Tomography
 Forward Model
 Optimization Algorithms
 Numerical Results

Multilevel-Based Acceleration
 Other Applications of Multilevel Methods
 Introduction of MG/OPT
 Application of Multilevel in Tomographic Reconstruction
 Numerical Results

Summary and Outlook
Summary

- Established a link between X-ray transmission and X-ray fluorescence datasets by reformulating their corresponding physical models.

- Developed a simultaneous optimization approach for the joint inversion, and achieved a dramatic improvement of reconstruction quality with no extra computational cost.

- Proposed a multigrid-based optimization framework to further reduce the computational cost of the reconstruction problem.

- Preliminary results show that coarsening in voxel space improves accuracy/speed.
Making More of More

- Extend our multimodal analysis tool to data from different instruments, involving varying spatial resolution and contrast mechanisms.

- Guided by the hierarchical nature of our multilevel algorithm, we will investigate new data acquisition strategies and allow for flexible and adaptive sampling approaches.

- Enable true real-time feedback.
This work was funded under the project "The Tao of Fusion: Pathways for Big-data Analysis of Energy Materials at Work" and "Base optimization (DOE-ASCR DE-AC02-06CH11357)".

Thanks to
Sven Leyffer, Stefan Wild, and collaborators at APS:
Francesco De Carlo, Si Chen, Doga Gursoy, Young Pyo Hong, Chris Jacobsen, Stefan Vogt