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Bacon on Planned Experiments

• Francis Bacon (Novum Organum, 1620): 
“There remains simple experience which, if 
taken as it comes, is called accident; if sought 
for, experiment. But this kind of experience 
is…a mere groping, as of men in the dark… 
But the true method of experience, on the 
contrary, first lights the candle, and then by 
means of the candle shows the way; 
commencing as it does with experience duly 
ordered and digested, not bungling or erratic, 
and from it educing axioms, and from 
established axioms again new experiments.”
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Models Precede Data
• William Barrett: “The scientist’s mind is 

not a passive mirror that reflects the facts as 
they are in themselves (whatever that might 
mean); the scientist constructs models, 
which are not found among the things 
given him in his experience, and proceeds 
to impose those models upon Nature. And 
he must often construct those models 
conceptually before they are translated at 
any point into the material constructions of 
his apparatus in the laboratory.”
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An Experiment is a Question

• Hans Reichenbach (Rise of Scientific 
Philosophy): “An experiment is a question 
addressed to Nature….As long as we 
depend on the observation of occurrences 
not involving our assistance, the 
observable happenings are usually the 
product of so many factors that we cannot 
determine the contribution of each 
individual factor to the total result.”
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Foolish Questions Yield Foolish Answers

• Norbert Wiener: “An experiment is a 
question. A precise answer is seldom 
obtained if the question is not precise; 
indeed, foolish answers – i.e., inconsistent, 
discrepant or irrelevant experimental 
results – are usually indicative of a foolish 
question.”
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Models Depend on Questions Asked

• Werner Heisenberg: “The most important new 
result of nuclear  physics was the recognition of 
the possibility of applying  quite different types 
of natural laws, without contradiction, to one 
and the same physical event. This is due to the 
fact  that within a system of laws which are 
based on certain fundamental ideas only certain 
quite definite ways of asking  questions make 
sense, and thus, that such a system is  separated 
from others which allow different questions to 
be put.  
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Answers Without Questions

• Hannah Arendt: “The experiment “being a 
question put before nature” (Galileo), the 
answers of science will always remain 
replies to questions asked by men; the 
confusion in the issue of objectivity was to 
assume that there could be answers without 
questions and results independent of a 
question-asking being.” 
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The Basic Engineering Problem

• Given a physical system, an objective, and a cost function 
quantifying the achievement of the objective, find an 
operator from a class of operators to minimize the cost.
– Control theory: find an optimal controller to alter the behavior 

of the system – for instance, a drug to alter gene regulation.
– Image processing: find an optimal filter to alter the properties of 

the image – for instance, reduce noise to improve recognition.
– Classification: find an optimal classifier to make decisions – for 

instance, decide the stage of a cancer.
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Our Problem

• Our problem is that we do not have an accurate model for 
the underlying system.
– Insufficient scientific knowledge and insufficient data.

• In this case there are two possibilities:
– Optimal: Use whatever knowledge we have plus data and find 

an optimal operator relative to the prior knowledge and the data.
– Ad hoc: Assume a form for the operator and use data to 

construct an operator that is hopefully close to optimal – study 
its properties.

• For classification, operator forms are classification rules.
– LDA, SVM, Neural network, etc.
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Classification

• For classification the scientific model is the feature-label 
distribution, the objective is to choose a class, the cost is 
the classification error, and a Bayes classifier minimizes 
the error, the minimum being the Bayes error.
– There can be many Bayes classifiers.
– The Bayes error is intrinsic to the feature-label distribution.

• For classification, operator forms are classification rules.
– LDA, SVM, Neural network, etc.
– These rules are ad hoc in the sense that they are not derived via 

optimality, but rather constructed via heuristics. 
– Their goodness is evaluated separately from their definition.
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• If the scientific model is uncertain but its structure and 
some of its parameters are known, then the true model 
belongs to an uncertainty class Q of models determined 
by a vector q of unknown parameters. 

• There is a cost function C and a class Y of operators.
• An intrinsically Bayesian robust (IBR) operator 

minimizes the expected value of the cost with respect to a 
prior probability distribution p(q) over Q.
– An IBR operator is robust in the sense that on average 

it performs best over the whole uncertainty class. 
– The prior distribution reflects our existing knowledge.

Robust Operators 
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• Suppose that, in addition to a prior distribution coming 
from existing knowledge, there is a data sample S. The 
prior distribution conditioned on the sample yields a 
posterior distribution p*(q) = p(q|S).
– The posterior distribution is evaluated via the likelihood 

function of the observed values. 
• An IBR operator for the posterior distribution is called an 

optimal Bayesian operator. 

Optimal Bayesian Operator 
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• Scientific model: feature-label distribution governing 
pairs (X, Y), where X = (X1,…, Xk) and Y = 0 or Y = 1.
– Class-conditional distributions f(x|0) and f(x|1) govern 

the feature vectors in class 0 and class 1, respectively, 
along with class probabilities c0 and c1.

• A classifier y is a decision function on the set of feature 
vectors: y(X) = 0 or y(X) = 1.
– Error of y is the probability of erroneous classification. 

• Bayes classifier has minimum error: yBay(x) = 1 if f(x|1) ³
f(x|0), and yBay(x) = 0 otherwise. 
– Error of yBay is the Bayes error.

Optimal Classification 
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Optimal Bayesian Classifier

• For any y Î Y, Eπ*[ε (yOBC, θ)] £ Eπ*[ε (y, θ)].
• Representation via effective class-conditional density:

– Dalton, L., and E. R. Dougherty, “Optimal Classifiers with Minimum 
Expected Error within a Bayesian Framework – Parts I and II,” Pattern 
Recognition, 46(5), 1288-1314, 2013.
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Common-covariance Gaussian Model

• Bayes classifier for actual model is linear and OBC is 
quadratic (n = 18).
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OBC for Gaussian Model

• Polynomial Optimal 
Bayesian Classifier (red line)
– Dotted lines are level curves 

for the Gaussian class-
conditional densities 
corresponding to the expected 
means and (equal) covariances 
for a given posterior. 

– Black solid line is linear 
classifier corresponding to the 
Bayes classifier for the 
expected mean and covariance 
parameters. 
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Prior + Data = Posterior

• The prior distribution represents the state of our 
knowledge prior to the data; the posterior represents the 
state of our knowledge after joining the prior with the 
data.
– Data reduces the uncertainty in the prior – less variance.
– Also centers posterior on the true model. 
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Convergence of the OBC

• In the Gaussian and multinomial models, as n ®¥ the 
OBC converges to the Bayes classifier for the true 
feature-label distribution.
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• An IBR operator is optimal over the uncertainty class, but 
it is likely to be suboptimal relative to the true model.

• There is a cost relative to applying yq on q because 
Cq(yq) £ Cq(yIBR).

• For any q Î Q, the objective cost of uncertainty (OCU) is 
OCU(q) = Cq(yIBR) - Cq(yq).

• Mean objective cost of uncertainty, MOCU(Q) = 
EQ[OCU(q)]. 
– MOCU is objective-based quantification of uncertainty.
– Entropy provides uncertainty quantification relative to the prior 

(posterior) distribution, not the engineering objective.

Objective Cost of Uncertainty 
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Objective-based Experimental Design

• If MOCU » 0, then, on average,  Cq(yIBR) » Cq(yq).
– If prior is concentrated around full model (plus some 

regularity conditions), expect IBR to be close to optimal. 
• To get a new posterior, choose experiment with 

minimum expected MOCU given the experiment. 
– For each possible experiment, compute MOCU for all 

possible outcomes, average these MOCUs, take the minimum 
of these averages, and do experiment. 

– Proceed iteratively.
• Result optimal experimental design relative to the cost 

function and the objective uncertainty.
– Maximal entropy reduction does not achieve this.
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Design Drug Intervention in Gene Network



T exas A & M

GSPLab

8/6/18

gsp.tamu.edu

Design Shape Memory Alloy

• Design a shape memory alloy with low dissipation energy.
– Aim of the experimental design is to suggest the best dopant and 

concentration for the next measurement. 
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• Base of the design loop. Numerous methods; however, a 
very general procedure can be used to derive the Maximal 
Knowledge-driven Information Prior (MKDIP) that 
minimizes an information-based cost function subject to 
constraints characterizing our prior knowledge.

• arg minpÎP Ep[Cq(x, D)]
– Cq(x, D) is a cost function depending on q, the state x of our 

prior knowledge and part of the sample data D.
– Maximum Entropy, Maximal Data Information, Expected Mean 

Log-Likelihood.
• MKDIP with constraints: optimization subject to 

constraints based on prior knowledge. 

Prior Construction 
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Design Loop
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• Construct posterior from existing scientific knowledge.
• Update prior to posterior using data.
• Find effective characteristics (effective class-conditional 

densities).
• Find optimal Bayesian operator (OBC).
• Evaluate  MOCU.
• Optimal experiment produces new knowledge to add to 

original knowledge or directly condition original prior, 
thus giving a new prior to re-institute the design process.

• Two optimizations in design loop: two cost functions, one 
for prior construction and one for operator design.

Design-Loop Operations 



T exas A & M

GSPLab

8/6/18

gsp.tamu.edu

• Optimal operator design is the fundamental problem of 
engineering, whose aim is to design operators to alter the 
behavior of a physical systems in a desired manner.

• Optimal Bayesian operator design is natural: the operator is 
optimal relative to both our engineering objective and the 
state of our knowledge.
– Scientific uncertainty is modeled, not operator uncertainty.

• If a problem is simple and there is a very large amount of 
data, then one can posit a complex operator form and 
estimate its parameters to hopefully get close to optimality.
– But how close, if one does not have an optimal operator?

• Experiments should reduce pertinent scientific uncertainty.

Conclusion 


