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Q: How do we accelerate the process of selecting 
chemistry, composition, processing conditions to 
find materials with targeted properties ?
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• Search for better Pb-free piezoelectrics

ABO3

Chemical space of                        
A

B

Nonmetallic99

49

632 = 3969

ΔE < 0.5eV
Armiento et al. PRB (2011)

ΔKS > 0.25eV

Small        for
distorted phases
across MPB

!ΔE

Screen for
perovskite
compounds

Computational Design

(Ba0.7Ca0.3)TiO3
Ba(Ti0.8Zr0.2) O3

PZT

20 – 30 samples, search space ~ 103

n=0.12 ; m=0.30 n=0.18 ; m=0.40

Experimental Design

Ba(Ti1-mXm)O3-x(Ba1-nYn)TiO3

Xue et al. PNAS (2016)

Liu and Ren, 2009

Liu and Ren, 2009

Xue et al, 2015

Materials discovery involves small amounts of data:
• Uncertainties, Multicomponent,  vast search space
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• iteratively improve predictions 

y(x)=f(x)�e(x)

Adaptive Learning for materials discovery

LDRD: 20140013DR

Surrogate model 
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• iteratively improve predictions 

MATERIALS 
PROJECT, OQMD,
AFLOWLIB, etc. 

Global search in high-dimensional space: ‘Exploit vs Explore’

y(x)=f(x)�e(x)

• Current state of art single
steps  (5 to 2, 2 to 4 or 4 to 5);

No inner feedback loop

Adaptive Learning for materials discovery

LDRD: 20140013DR



Bayesian Global Optimization large scale 
computational tasks OR  experiments

Surrogate 
model

designs
New

Response
surfaces

Preliminary Experiments
Variables

Initial Designs

High fidelity, Expensive
Computer Calculation

Infill points

Bayesian Optimization
P[I] Kushner’64
E[I] Mockus’78
E[Ig] Jones’88

Bayesian

Function
Evaluation

Measurement Policies
Online: bandit problems
Offline :ranking and selection

: stochastic search

Value of Information (Howard’ 65)

!! ŷ

!x

!y

Constraints,
Multiobjective,
Multifidelity
Parallel function
evaluations

Probability Collectives
(Wolpert’98)

Mean Objective Cost
of Uncertainty (MOCU)
(Dougherty’2013)

T.L.  et al, Curr Opin in Sol Stat and Mat Sci.’ 2016

Knowledge gradient (Powell)

Utility functions       (Lindley’ 55, ‘72)
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Design of Experiments (DOE)

Guide choice of experiments in an efficient manner

§ Factors X1, . . . Xk à Y

§ Designs

Randomized Complete Block

Factorial: Full, Fractional, Composite

: Box-Behnken

Random 

Latin HyperCube

Optimal Design : Find sample to

yi = f! (xi)� ei e ∼ #( 0, $ ) Var (! ) = $2 (XT X)-1 Var (yi) = $2 (XT X)-1 xi

optimize Y

yi = !Txi� ei

Santner et al. ’ 2003
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Experimental design via Bayesian Optimization  

Step 1: Estimate objective

Data

Posterior

Gaussian 
process O’Hagan, 70



Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D 2016 Materials for the Future

Choose next point to maximize uncertainty:

Choose next point to minimize uncertainty: 
(150 data points, 3 in training set.)

actual 
predicted

Step 2: Sample with utility function
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Utility functions: encoding decision criteria 

n Expected Improvement à EGO (Kushner, Mockus, Jones)

n Expected Quantile Improvement (Picheny)

n Lower or Upp. Confidence Bounds (Cox and Johnson, Srinivas)

n Sequential Kriging Optimization (Huang)

n Knowledge Gradient (Powell, Frazier)

n Mean Objective Cost of Uncertainty (Yoon, Xian, Dougherty)

n Maximum Variance



Ntrain = End 3

Results



Results
Ntrain = sample 3

!"# = ∑&'() *& − ,
)
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Expected improvement

Pr
op

er
ty

 o
f i

nt
er

es
t, 

y(
x)

Candidate materials, x

Improvement:

xi = argmaxx [E(I(x))]

= ( ŷ − fmax )Φ
ŷ − fmax

σ
⎛
⎝⎜

⎞
⎠⎟ +σφ

ŷ − fmax
σ

⎛
⎝⎜

⎞
⎠⎟

I(x) = max(Y − fmax ,0)

fmax

ŷ

σ

Y

E[I(x)] = (Y − fmax )
fmax

∞

∫ P(Y | x')dY

σSmall E→ ŷ − fmax

σLarge 

Choose      better than best-so-far 

E→σ Choose       with largest uncertainty 

Limiting cases:
ŷ

ŷ

fmax

σ

!!N( ŷ ,σ
2)

Choose sample with largest “Expected Improvement”:

Exploitation (local, utilize model)

Exploration (global, improve model)

Mockus’78, Jones’88
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Mean Objective Cost of Uncertainty

Dehghannasiri, R., Yoon, B-J., and E. R. Dougherty, “Optimal Experimental Design for Gene Regulatory Networks 
in the Presence of Uncertainty,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2016 

Identify experiment expected to maximally reduce MOCU one step ahead 

Assume cost function, 

If       known, then the optimal material would be

If       unknown, then the robust material is   

c
Unknown parameters 

MOCU = Expected Loss in using
robust instead of optimal

characterizes an experiment 
e.g. material composition
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MOCU: Selection of next experiment 

n Experiments                             Outcomes:  

Remaining 
after outcome 

Conditional 
distribution 

Using Bayes, obtain  

Expected remaining MOCU given that experiment        undertaken:  
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Problem: Minimize energy dissipation by selecting optimal dopants 
in as few experiments as possible 

Use physics based model as surrogate for objective:
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Active learning loop
 
 

 

 

 

 

 

 

 

 

 

Chosen measurement 
  𝑖∗, 𝑐∗ Prior 𝑓𝑯𝚺(𝒉, 𝝈)   

 

Experimental 
design  

Conducting 
measurement  

Posterior 𝑓𝑯𝚺(𝒉, 𝝈|𝑋𝑖∗,𝑐∗ = �̂�)   

Robust material 
  𝑖(Θ|𝑋𝑖∗,𝑐∗ = �̂�), 𝑐(Θ|𝑋𝑖∗,𝑐∗ = �̂�) 
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Comparison with several strategies
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Optimize  codes: LED structures for 
highest efficiencies at high currents

§Gaussian Process + EGO

§Quantum
Efficiencies

APSYS
code

Features:
barrier height

5 quantum wells

§Before

§After

§Leduc et al.,  2016
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Examples 

Data-driven
Use theory with data

100 100 3( )( )x y x y u v u vBa TCa Zr Sni OSr- - - -

§ Largest 
electrostrain

Experiments Experiments

Yuan et al., Advanced Materials, 1702884 2018
Xue et al., PNAS, 2016

Strategy:  Ti50 Ni50-x-y-z Cux Pdy Fez
Total possibilities: 800,000 (22 known)
Target:  Minimize Thermal Hysteresis

36 experiments
14 with superior properties

Xue et al., Nature Comm., 2016
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Computations

Predict new materials Accelerate codes

Ruddlesden-Popper Phases

Balachandran et al., Nature Comm., 2017 Pilania et al., Computational Materials Sci, 2017
Leduc et al., Sci. Rep, 2016, APL 2017
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Example: Find NiTi alloy with lowest hysteresis

Thermal

hysteresis Desire

Strategy:Ti
50

Ni
50-x-y-z

Cu
x

Pd
y

Fe
z

!ΔT

Search space of multicomponent alloy ~800K 

22 training samples (.003%) with measured   ΔT

Composition control 0.1%

C

!!50− x − y − z ≥30%
x ≤20%, y ≤5%,z ≤20%

Knowledge:

• Transition temperatures influenced

by valence electron concentration 

• Hysteresis influenced by atomic size

• Relative stability influenced by

changes in electron number 

Features:

Valence electron number

Radii: metallic, Clementi, Zunger

Electronegativity

Pettifor Chemical scale

Each  Ti50 Ni50-x-y-z Cux Pdy Fez weighted
fraction of features
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Adaptive Design for Alloy Discovery

Xue et al., Nature Comm., 2016



Experiments
Melting Rolling Heat treatment

Thermal
hysteresis

Measurement: DSC
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Material Performance for Synthesized Alloy 

1.84K

9 loops,    36 predicted and synthesized
14 better than 3.15K,  p value < .001

(42% improvement)
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How good does the model have to be ?

§μ*

§μ
’’

True

Pr
ed

ic
te

d
next selection

Blue: in-sample Green: out-of-sample



Electrical energy

Mechanical energy

Piezoelectrics

Applications
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Unknown
(605306)

Known (61)

100 100 3( )( )x y x y u v u vBa TCa Zr Sni OSr- - - -

100 60% 40% 30%x y x y- - ³ £ £

100 60% 30% 30%u v u v- - ³ £ £

Search for BaTiO3 based solid solutions with 
relatively large electrostrains

ABO3

A
B

Compositional control 1%
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Figure of merit and target



Experiments - fabrication

W Liu, X Ren. Physical Review Letters (2009); D Xue, et.al Applied Physics Letters (2011); C Zhou, et. al Applied Physics Letters (2013)

 

Te
m

pe
ra

tu
re

 (
o C

)

−150

−100

−50

0

50

100

150

 

BTS-xBCT
0 0.2 0.4 0.6 0.8 1
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materials

Ball 
milling

Calcining

Ball 
milling

Shaping

Sintering

Electrod

one composition in 
the phase diagram 
needs the whole 
procedure

Conventional solid-state reaction method
Standard, but 

• Not  high throughput

• Two days for four samples

• High dopant concentration samples need to tune 

the sintering conditions 
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Experimental Comparison of design strategies : 
Search for BaTiO3-based large electrostrains
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Relative Figure of Merit (Ba0.84Ca0.16)(Ti0.90Zr0.07Sn0.03)O3
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Comparing outcome to predictions
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Comparison of BCT-BZT based piezoelectrics

(Ba0.84Ca0.16)(Ti0.90Zr0.07Sn0.03)O3

(Ba0.84Ca0.15)(Ti0.90Zr0.10)O3 

(Ba0.84Ca0.16)(Ti0.90Zr0.10)O3
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§n=0.12 ; m=0.30 §n=0.18 ; m=0.40

§Q: What combination of  m,n and  chemistries (Al, Li, …) will optimize 
phase boundaries, response?

An - Bm

§Design criterion: Vertical
§PZT

m

n

Example: Importance of knowledge 
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Approach

(Ba0.7Ca0.3)TiO3
Ba(Ti0.8Zr0.2) O3

(111)
§R phase   

(100)

τ = f (τC ,a2,a6,., pR , pT )
At 
MPB fR = fT
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Learning from theory + data    

x(Ba1−mCam)TiO3−Ba(ZrnTi1−n)O3

18%< m < 50%; 15% < n < 30%

§Features:  

!
t f =

RA +Ro
RB +Ro

!ΔV =VT −VR !!uT ,uR

!!
reff _nucl =

AencT
BencR

relec _neg =
AenT
BenR

§Training data: 19 phase diagrams

§ Order parameters: Polarization, Strain

τ = f (τC ,a2,a6,., pR , pT )
§ Prior distribution subject to constraints

§ Take samples from posterior

(1200 phase diagrams)

T

R



Data

DRAFT

Fig. S 2. 20 phase diagrams used in the present study. 1 - 19 serve as the training data whereas 20 is the new system predicted by our Bayesian approach
and adaptive design. All phase diagrams are characterized by a morphotropic phase boundary as shown in red symbols and curves.

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Xue

Ø New 

⌧PF

⌧MPB
(both show composition 
dependence)
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Predictions/ synthesis from model + data    

Xue et al., PNAS, 2016

Best in the training data:
Ba(Zr0.2Ti0.8)O3 – (Ba0.7Ca0.3)TiO3

New Prediction:    
Ba(Zr0.3Ti0.7)O3 – (Ba0.5Ca0.5)TiO3
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Challenges – Path forward

n No free lunch theorem !

n Integrate physics models 

n Guiding principles for different classes of 
problems (materials, ..)

(Wolpert, 98)



BioManufacturing
with Intelligent Adaptive Control

LASL’s MANIAC (Mathematical Analyzer, Numerical Integrator, 
and Computer or Mathematical Analyzer, Numerator, 

Integrator, and Computer was an early computer built under 
the direction of Nicholas Metropolis, 1952

4720190001DR

BIOMANIAC



What Problem are we Trying to Solve?
• Plastics–synthetic polymers made from petrochemicals–have revolutionized 

our society.
• However, plastics are over-engineered for durability, and plastic pollution is 

now a scourge on our planet.
• We propose to help solve this problem with an innovative process to discover, 

design, and develop new biopolymers with improved functionalities, balancing 
durability with faster degradability in the environment.

• Use biology as a template for new chemistries.

The Plastic Lifecycle. Top: Past: Cradle to 
Grave. Plastic from petroleum is used for most 
packaging, but ends up in landfills or in the 
environment. Bottom: Future: Cradle to Cradle. 
Algae can be used to produce bio-based 
plastics. Along with improved recycling 
methods (e.g. P&G’s Head & Shoulders 
shampoo bottle made from pelletized beach 
plastic) biodegradable compostable bioplastic
can be broken down into basic molecules that 
can be captured and re-used as nutrients in 
agriculture.

48



APPROACH

Ø A model or recipe that will predict the 
synthesis conditions/chemistries  to make 
polymers with targeted performance
from the biology or chemistry routes with 
given confidence levels.

Ø A general approach that allows for 
efficient exploration of vast chemical 
spaces and synthesis conditions using ML 
to guide chemistry and/or biology based 
synthesis routes

Ø Novel, degradable biopolymers (with a 
favorable combination of other 
properties, e.g., breathability, durability, 
mechanical strength) synthesized via the 
proposed biosynthesis route

Feature space xc
i

Fea
ture 

sp
ac

e x
c j

Figure-of-merit surface

Overlap region where 
biology mimics chemistry

The Chemistry Loop
The B

iology L
oop

Classification model: ML3
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