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Motivating questions

We know that a 5% random sample is better than a 5%
non-random sample in measurable ways (e.g., bias,
predictive power).

But is an 80% non-random sample “better” than a
5% random sample in measurable terms? 90%?
95%? 99%? (Jeremy Wu of US Census Bureau, 2012,
Seminar at Harvard Statistics)

“Which one should we trust more: a 1% survey with
60% response rate or a non-probabilistic dataset
covering 80% of the population?” (Keiding and Louis,
2015, Joint Statistical Meetings; and JRSSB, 2016)
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A Bit of History: Theory and Practice

Law of Large Numbers:
Jakob Bernoulli (1713)

Central Limit Theorem:
Abraham de Moivre (1733):
error ∝ 1√

n
: n − sample size

Survey Sampling:

Graunt (1662); Laplace (1882)
The “intellectually violent
revolution” in 1895 by Anders
Kiær, Statistics Norway

Landmark paper: Jerzy
Neyman (1934)

The “revolution” lasted
about 50 years (Jelke
Bethlehem, 2009)

First implementation in
US Census: 1940 led by
Morris Hansen
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Stir it well, then a
few bits are
sufficient regardless
of the size of the
container!
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2016 US Presidential Election

n: number of respondents to an election survey

N: number of (actual) voters in US

Xj = 1: plan to vote for Trump; Xj = 0 otherwise

Rj = 1: report (honestly) voting plan; Rj = 0 otherwise

Estimatinng Trump’s share: µ
N

= Ave(Xj) by sample average:

µ̂n =
R1X1 + . . .+ RNXN

n
=

Ave(RjXj)

Ave(Rj)

Actual estimation error

µ̂n − µN
=

Ave(RjXj)

Ave(Rj)
− Ave(Xj)

=

[
Ave(RjXj)− Ave(Rj)Ave(Xj)

σ
R
σ

X

]
× σ

R

Ave(Rj)
× σ

X
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Data quality, quantity, and uncertainty

Because σ2
R = f (1− f ), f = Ave{Rj} = n

N , we have

Error = ρ̂
R,X︸︷︷︸

Data Quality

×

√
N − n

n︸ ︷︷ ︸
Data Quantity

× σ
X︸︷︷︸

Problem Difficulty
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Data Defect Index (d.d.i.)

Mean Squared Error (MSE)

MSE(µ̂n) = ER(ρ̂2)× N − n

n
× σ2

X

Data Defect Index (d.d.i): DI = ER(ρ̂2)

For Simple Random Sample (SRS): DI = (N − 1)−1

For probabilistic samples in general: DI ∝ N−1

Deep trouble when DI does not vanish with N−1;

or equivalently when ρ̂ does not vanish with N−1/2 ...
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A Law of Large Populations (LLP)

If ρ = ER(ρ̂) 6= 0, then on average, the relative error ↑
√
N:

Actual Error

Benchmark SRS Standard Error
=
√
N − 1ρ̂

The (lack-of) design effect (Deff)

Deff =
MSE

Benchmark SRS MSE
= (N − 1)DI

Paradigm shift for “Big Data”:

From
σ√
n︸︷︷︸

random error

to ρ̂
√
N︸ ︷︷ ︸

relative systemtic bias
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Effective Sample Size

The Effective Sample Size neff of a “Big Data” set

Equate its MSE to that from a SRS with size neff :

DI

[
N − n

n

]
σ2 =

1

N − 1

[
N − neff

neff

]
σ2

What matters is the relative size f = n/N

neff =
n

1 + (1− f )[(N − 1)DI − 1]
≈ f

1− f

1

ρ̂2
.
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Gaining 2020 Vision: Assessing the behavioral ρ̂
using validated voter counts (≈ 35, 000)

CCES: Cooperative Congressional Election Study
(Conducted by Stephen Ansolabehere, Brian Schaffner, Sam Luks, Douglas Rivers

on Oct 4 - Nov 6, 2016 (YouGov); Analysis assisted by Shiro Kuriwaki)

Poll underestimated

Clinton support

Poll overestimated

Clinton support
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Serious underestimation of
Trump’s Vote Share
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Assessing ρ̂ using state-level data

Let µ
N

be the true share, and µ̂n the estimated share. Then

ρ̂ =
µ̂n − µN√

N−n
n σ2

, & σ2 = µ
N

(1− µ
N

)

−0.00021 ± 0.00061
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Trump: ρ̂ ≈ −0.0045± 0.0006
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What’s the implication of ρ̂ = −0.005?

Many (major) survey results published before Nov 8, 2016;

Roughly amounts to 1% of eligible voters: n ≈ 2, 300, 000;

Equivalent to 2,300 surveys of 1,000 respondents each.

When ρ̂ = −0.005 = −1/200,DI = 1/40000, and hence

neff =
f

1− f

1

DI
=

1

99
× 40000 ≈ 404!

A 99.98% reduction in n, caused by ρ̂ = −0.005.

Butterfly Effect due to Law of Large Populations (LLP)

Relative Error =
√

N− 1ρ̂
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Visualizing LLP: Actual Coverage for Clinton
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Visualizing LLP: Actual Coverage for Trump
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The Big Data Paradox:

If we do not pay attention to data quality, then

The bigger the data,

the surer we fool ourselves.
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Lessons Learned ...

Lesson 1: What matters most is the quality, not the
quantity.

Lesson 2: Don’t ignore seemingly tiny probabilistic
datasets when combining data sources.

Lesson 3: Watch the relative size, not the absolute
size.

Lesson 4: Classical theory is BIG for “big data”, as
long as we let it go outside the classical box.
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In case you are kind enough to invite me again ...

The sequel: Meng (2018/9)

Statistical Paradises and Paradoxes in Big Data (II):
Multi-resolution Inference, Simpson’s

Paradox, and Individualized Treatments
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