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A New Learning Problem
Automatic Concept Learning

Input Output

Concepts
Rules
Laws
…



A New Learning Paradigm

New Concept Representation
New Learning Algorithm
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Data space: (X, pX) (X, p)or for short

Assume a data point x 2 X is an i.i.d. sample
drawn from a probability distribution p .

However, the data distribution    , or an estimation  
of it, is known.

p

The goal here is not to estimate     but to explain it.p

Representation: Data Space



Representation: Chord Space
Considering chords from Bach’s four-part chorales 
recorded in sheet music.
Here, a chord is any collection of four simultaneously 
sounding pitches.
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Representation: Probabilistic Rules
A probabilistic rule is a pair:

(A, pA)

where      is an abstraction (partition);A
is a probability distribution over 
the abstracted concepts (cells). 

pA

0.5
0.4

0.1
X = {x1, x2, x3, x4, x5, x6}
A = {{x1, x6}, {x3}, {x2, x4, x5}}
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Abstraction:

Concept:

Probabilistic rule:

a partition

a partition cell (cluster)

abstraction & distribution



Automatic Concept Learning
is

the process of learning probabilistic rules

But how?
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Figure 1: MUS-ROVER’s self-learning loop (the kth iteration). The teacher (discriminator) takes
as inputs the student’s latest style p

hk�1i
stu

and the input style p̂, and identifies a feature � through
which the two styles manifest the largest gap D(·||·). The identified feature is then made into a rule
(a constraint set �

k

), and augments the ruleset {�
i

}k

i=1. The student (generator) takes as input the
augmented ruleset to update its writing style into p

hki
stu

, and favors creativity, i.e. more possibilities,
by maximizing the Tsallis entropy S

q

subject to the rule constraints. In short, the teacher extracts
rules while the student applies rules; both perform their tasks by solving optimization problems.

We compare the paths taken by this improved automatic theorist to paths taken by human theorists
(say Fux), studying similarities as well as pros and cons of each. So advantages from both can be
jointly taken to maximize the utility in music education and research. In this paper in particular,
we highlight the concept hierarchy that one would not get from our prior work, as well as enhanced
syllabus personalization that one would not typically get from traditional pedagogy.

2 MUS-ROVER OVERVIEW

As the first algorithmic pathfinder in music, MUS-ROVER I introduced a “teacher ⌦ student” model
to extract compositional rules for writing 4-part chorales (Yu et al., 2016a;b). The model is im-
plemented by a self-learning loop between a generative component (student) and a discriminative
component (teacher), where both entities cooperate to iterate through the rule-learning process (Fig-
ure 1). The student starts as a tabula rasa that picks pitches uniformly at random to form sonorities
(a generic term for chord) and sonority progressions. The teacher compares the student’s writing
style (represented by a probabilistic model) with the input style (represented by empirical statistics),
identifying one feature per iteration that best reveals the gap between the two styles, and making it
a rule for the student to update its probabilistic model. As a result, the student becomes less and
less random by obeying more and more rules, and thus, approaches the input style. Collecting from
its rule-learning traces, MUS-ROVER I successfully recovered many known rules, such as “Parallel
perfect octaves/fifths are rare” and “Tritons are often resolved either inwardly or outwardly”.

What is Inherited from MUS-ROVER I MUS-ROVER II targets the same goal of learning in-
terpretable music concepts. It inherits the self-learning loop, as well as the following design choices.

(Dataset and Data Representation) We use the same dataset that comprises 370 C scores of Bach’s
4-part chorales. We include only pitches and their durations in a piece’s raw representation, notated
as a MIDI matrix whose elements are MIDI numbers for pitches. The matrix preserves the two-
dimensional chorale texture, with rows corresponding to melodies, and columns to harmonies.

(Rule Representation) We use the same representation for high-level concepts in terms of rules,
unrelated to rules in propositional logic. A (compositional) rule is represented by a feature and its
distribution: r = (�, p

�

), which describes likelihoods of feature values. It can also be transformed
to a linear equality constraint (A

�

p
stu

= p
�

) in the student’s optimization problem (�’s in Figure 1).

(Student’s Probabilistic Model) We still use n-gram models to represent the student’s style/belief,
with words being sonority features, and keep the student’s optimization problem as it was. To
reiterate the distinctions to many music n-grams, we never run n-grams in the raw feature space, but
only collectively in the high-level feature spaces to prevent overfitting. So, rules are expressed as
probabilistic laws that describe either (vertical) sonority features or their (horizontal) progressions.
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subject to the rule constraints. In short, the teacher extracts
rules while the student applies rules; both perform their tasks by solving optimization problems.

We compare the paths taken by this improved automatic theorist to paths taken by human theorists
(say Fux), studying similarities as well as pros and cons of each. So advantages from both can be
jointly taken to maximize the utility in music education and research. In this paper in particular,
we highlight the concept hierarchy that one would not get from our prior work, as well as enhanced
syllabus personalization that one would not typically get from traditional pedagogy.

2 MUS-ROVER OVERVIEW

As the first algorithmic pathfinder in music, MUS-ROVER I introduced a “teacher ⌦ student” model
to extract compositional rules for writing 4-part chorales (Yu et al., 2016a;b). The model is im-
plemented by a self-learning loop between a generative component (student) and a discriminative
component (teacher), where both entities cooperate to iterate through the rule-learning process (Fig-
ure 1). The student starts as a tabula rasa that picks pitches uniformly at random to form sonorities
(a generic term for chord) and sonority progressions. The teacher compares the student’s writing
style (represented by a probabilistic model) with the input style (represented by empirical statistics),
identifying one feature per iteration that best reveals the gap between the two styles, and making it
a rule for the student to update its probabilistic model. As a result, the student becomes less and
less random by obeying more and more rules, and thus, approaches the input style. Collecting from
its rule-learning traces, MUS-ROVER I successfully recovered many known rules, such as “Parallel
perfect octaves/fifths are rare” and “Tritons are often resolved either inwardly or outwardly”.

What is Inherited from MUS-ROVER I MUS-ROVER II targets the same goal of learning in-
terpretable music concepts. It inherits the self-learning loop, as well as the following design choices.

(Dataset and Data Representation) We use the same dataset that comprises 370 C scores of Bach’s
4-part chorales. We include only pitches and their durations in a piece’s raw representation, notated
as a MIDI matrix whose elements are MIDI numbers for pitches. The matrix preserves the two-
dimensional chorale texture, with rows corresponding to melodies, and columns to harmonies.

(Rule Representation) We use the same representation for high-level concepts in terms of rules,
unrelated to rules in propositional logic. A (compositional) rule is represented by a feature and its
distribution: r = (�, p
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(Student’s Probabilistic Model) We still use n-gram models to represent the student’s style/belief,
with words being sonority features, and keep the student’s optimization problem as it was. To
reiterate the distinctions to many music n-grams, we never run n-grams in the raw feature space, but
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We compare the paths taken by this improved automatic theorist to paths taken by human theorists
(say Fux), studying similarities as well as pros and cons of each. So advantages from both can be
jointly taken to maximize the utility in music education and research. In this paper in particular,
we highlight the concept hierarchy that one would not get from our prior work, as well as enhanced
syllabus personalization that one would not typically get from traditional pedagogy.

2 MUS-ROVER OVERVIEW

As the first algorithmic pathfinder in music, MUS-ROVER I introduced a “teacher ⌦ student” model
to extract compositional rules for writing 4-part chorales (Yu et al., 2016a;b). The model is im-
plemented by a self-learning loop between a generative component (student) and a discriminative
component (teacher), where both entities cooperate to iterate through the rule-learning process (Fig-
ure 1). The student starts as a tabula rasa that picks pitches uniformly at random to form sonorities
(a generic term for chord) and sonority progressions. The teacher compares the student’s writing
style (represented by a probabilistic model) with the input style (represented by empirical statistics),
identifying one feature per iteration that best reveals the gap between the two styles, and making it
a rule for the student to update its probabilistic model. As a result, the student becomes less and
less random by obeying more and more rules, and thus, approaches the input style. Collecting from
its rule-learning traces, MUS-ROVER I successfully recovered many known rules, such as “Parallel
perfect octaves/fifths are rare” and “Tritons are often resolved either inwardly or outwardly”.

What is Inherited from MUS-ROVER I MUS-ROVER II targets the same goal of learning in-
terpretable music concepts. It inherits the self-learning loop, as well as the following design choices.

(Dataset and Data Representation) We use the same dataset that comprises 370 C scores of Bach’s
4-part chorales. We include only pitches and their durations in a piece’s raw representation, notated
as a MIDI matrix whose elements are MIDI numbers for pitches. The matrix preserves the two-
dimensional chorale texture, with rows corresponding to melodies, and columns to harmonies.

(Rule Representation) We use the same representation for high-level concepts in terms of rules,
unrelated to rules in propositional logic. A (compositional) rule is represented by a feature and its
distribution: r = (�, p
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), which describes likelihoods of feature values. It can also be transformed
to a linear equality constraint (A
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) in the student’s optimization problem (�’s in Figure 1).

(Student’s Probabilistic Model) We still use n-gram models to represent the student’s style/belief,
with words being sonority features, and keep the student’s optimization problem as it was. To
reiterate the distinctions to many music n-grams, we never run n-grams in the raw feature space, but
only collectively in the high-level feature spaces to prevent overfitting. So, rules are expressed as
probabilistic laws that describe either (vertical) sonority features or their (horizontal) progressions.
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We compare the paths taken by this improved automatic theorist to paths taken by human theorists
(say Fux), studying similarities as well as pros and cons of each. So advantages from both can be
jointly taken to maximize the utility in music education and research. In this paper in particular,
we highlight the concept hierarchy that one would not get from our prior work, as well as enhanced
syllabus personalization that one would not typically get from traditional pedagogy.
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As the first algorithmic pathfinder in music, MUS-ROVER I introduced a “teacher ⌦ student” model
to extract compositional rules for writing 4-part chorales (Yu et al., 2016a;b). The model is im-
plemented by a self-learning loop between a generative component (student) and a discriminative
component (teacher), where both entities cooperate to iterate through the rule-learning process (Fig-
ure 1). The student starts as a tabula rasa that picks pitches uniformly at random to form sonorities
(a generic term for chord) and sonority progressions. The teacher compares the student’s writing
style (represented by a probabilistic model) with the input style (represented by empirical statistics),
identifying one feature per iteration that best reveals the gap between the two styles, and making it
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its rule-learning traces, MUS-ROVER I successfully recovered many known rules, such as “Parallel
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What is Inherited from MUS-ROVER I MUS-ROVER II targets the same goal of learning in-
terpretable music concepts. It inherits the self-learning loop, as well as the following design choices.

(Dataset and Data Representation) We use the same dataset that comprises 370 C scores of Bach’s
4-part chorales. We include only pitches and their durations in a piece’s raw representation, notated
as a MIDI matrix whose elements are MIDI numbers for pitches. The matrix preserves the two-
dimensional chorale texture, with rows corresponding to melodies, and columns to harmonies.

(Rule Representation) We use the same representation for high-level concepts in terms of rules,
unrelated to rules in propositional logic. A (compositional) rule is represented by a feature and its
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), which describes likelihoods of feature values. It can also be transformed
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(Student’s Probabilistic Model) We still use n-gram models to represent the student’s style/belief,
with words being sonority features, and keep the student’s optimization problem as it was. To
reiterate the distinctions to many music n-grams, we never run n-grams in the raw feature space, but
only collectively in the high-level feature spaces to prevent overfitting. So, rules are expressed as
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largest statistical difference between the student 
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Teacher: a Discriminative Model

PX : abstraction universe

Mathematically, a partition lattice, which is a special type 
of partially ordered set
Pictorially, a directed acyclic graph (vertex: partition; edge: 
coarser than)

coarser

finer

(more general)

(more specific)
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Teacher: a Discriminative Model

• Feature-Induced Partition

How to construct A 2 PX (abstraction universe) ?

For example: d = mod12 � diff, w = w{1,4}

A� =
�
��1({y}) | y 2 �(X)

 

How to construct � 2 � (feature universe) ?

� = d � w

d 2 D (discriptors) and w 2 W (windows) ?How to construct
d = bk � · · · � b1, bi 2 B

w = wI , I ✓ {1, 2, 3, 4}
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Teacher: a Discriminative Model
The teacher solves an optimization problem:

given     , computing        is easy:p pANote that:

{x1, x6} {x3} {x2, x4, x5}x1 x2 x3 x5 x6x4

0.1 0.1 0.1
0.2 0.2

0.3 0.30.3
0.4

maximize

A2PX

DKL

⇣
phk�1i
A,stu

�� pA
⌘

subject to the abstraction A satisfying

the memorability condition

the hierarchy condition

. . .
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Student: a Generative Model

Apply probabilistic rules, which is known as 
the rule realization problem.

Given       , compute    :ppA

x1 x2 x3 x5 x6x4{x1, x6} {x3} {x2, x4, x5}

0.30.3
0.4

? ? ? ? ? ?

0.30.3
0.4

{x1, x2} {x3, x4} {x5, x6}

…

not necessarily unique
which one do we prefer?



Want to find the probabilistic model which 
enables novelty while at the same time 
satisfies all the rules.

Student: a Generative Model
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linear equality constraint

Student: a Generative Model
The student solves another optimization problem:

maximize

phki
stu2�|X|

Sq(p
hki
stu) := (q � 1)

�1
⇣
1� kphkistukqq

⌘

subject to A(i)phkistu = pA(i) , i = 1, . . . , k

Tsallis entropy: measures randomness

partition matrix: represents abstraction

gini impurity function  q = 2 :

Linear Least-Squares Problem!



How MUS-ROVER Self-Evolves?



Context-Free Rules (1-gram)

Rules and Outcomes



Student 0

Fundamentals (1-gram)
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Fundamentals (1-gram)

Rule 1:
order � w1,2,3,4

(Spacing) Almost always, the soprano pitch is above the alto, 
alto above tenor, and tenor above bass.



Fundamentals (1-gram)

Student 1
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Rule 2:
mod12 � w1

11970 52 4
1 3 1086



Fundamentals (1-gram)

(Scale) The soprano voice is drawn from a diatonic scale 
with high probability.

Rule 2:
mod12 � w1

11970 52 4
1 3 1086



Fundamentals (1-gram)

Student 2



Fundamentals (1-gram)
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Fundamentals (1-gram)

Student 22



Context-Specific Rules (n-gram)

Bach’s Music Brain
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Loop 10
unlearned
1-gram
3-gram
10-gram
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unlearned
1-gram
3-gram
10-gram
6-gram
7-gram
4-gram

End of Loop 10

Part Writing (n-gram): 14th Chord



Generalizing to Other Topic Domains 

• Physics 
• Cancer biology 
• and more
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