
Detailed Performance Analysis of
Distributed Tensorflow on a GPU
Cluster using Deep Learning Algorithms

Abid Malik, Yuewei Lin, Shinjae Yoo, Nathaniel Wang, and
Michael Lu
Computer Science and Mathematics Department
Computational Science Initiative

NYSDS 2018

Outline

• Introduction
• Distributed Deep Neural Networks
• Horovod Framework
• Detailed Performance Analysis
• Conclusion and Future Work

2

Introduction
Where there is a large data, there is a need for deep learning
to process the information!

3

We find Big Data in every
field. Therefore, we find
great demand of deep
learning in every area

Why we need High Performance
Computing (HPC) for Deep Learning?

• > 1 month
• Don’t even try

• 1-4 weeks
• High value experiments only
• Progress stalls

• 1-4 days
• Tolerable
• Interactively replaced by running many

experiments in parallel

• Minutes, Hours
• Interactive research! Instant gratification! ☺

• Online learning, training time is crucial

Shorter “training time” is
important, and we need
HPC for this!

Jeffrey Deans from the Google Tensorflow
Team

4

Parallelizing Deep Learning

• Stochastic gradient descent (often
shortened to SGD), also known as
incremental gradient descent, is an
iterative method for optimizing a
differentiable objective function

• Parallelizing SGD is very hard. It
is inherently sequential algorithm
1. Start at some state t (point

in a billion dimensional
space)

2. Introduce t to data batch d1
3. Compute an update (based

on the objective function)
4. Apply the update → t+1

5

Parallelizing Deep Learning

6

Data Parallelism Model Parallelism

Parallelizing Deep Learning

7

Synchronous

Asynchronous

Centralized Non-Centralized

Scalability Performance
• Three core performance parameters:

• Throughput : data points/sec
• Latency : completion time for one epoch
• Accuracy: ability to classify unseen cases

8

• Need to improve the performance by:
• Improving the performance on a node (needs

lot of compiler optimizations)– internal
parallelism

• Improving the time between the two states
(Input/output and communication is a big
challenge)— external parallelism

• Using large batch size

Noticeable Work in this Area!

Extremely Large Mini-batch SGD: Training
ResNet-50 on ImageNet in 15 Minutes
Takuya Akiba, Shuji Suzuki, Keisuke Fukuda:
2017

Around 75%
accuracy

9

Highly Scalable Deep Learning Training System
with Mixed-Precision: Training ImageNet in
Four Minutes:Xianyan Jia et al. May, 2018

The latest
work

ImageNet Training in Minutes:Yang
You (UC Berkeley), Zhao Zhang
(TACC), Cho-Jui Hsieh (UC Davis),
and James Demmel and Kurt
Keutzer (UC Berkeley) - ICPP
2018

https://arxiv.org/search?searchtype=author&query=Akiba,+T
https://arxiv.org/search?searchtype=author&query=Suzuki,+S
https://arxiv.org/search?searchtype=author&query=Fukuda,+K

Writing Distributed Deep Learning
Algorithms

• Challenges:
• Deep learning framework or training library must

support inter-node and intra-node communication
• Tensorflow, MxNeT, PyTorch, Caffe, Chainer
• These frameworks come with poorly understood

overheads associated with communication and data
management

• The user must modify the code to take advantage of
inter-node communication. The changes to code can
be minimal to significant depending on the user’s
expertise in the distributed systems

10

Writing Distributed Deep Learning
Algorithms

• Tensorflow supports Parameter Server model
• One needs to change 10% of your code to make

Tensorflow code workable across the nodes
• One needs to tune the code to make it scalable

over large number of nodes
• This requires an expert level knowledge of

parallel programming models and distributed
systems

11

Horovod Framework from Uber
Inc.
• From Uber AI Engineering Team in 2017

• Deep learning for self driving cars
• Fraud detection
• Optimal route prediction

• Open-source available at GitHub
• Provides easy and fast way to do

distributed machine learning using
Tensorflow, PyTourch, and Keras

• Adopted by Cray, IBM, and Microsoft for
their distributed machine learning
frameworks

12

Horovod Framework
• One needs to make few changes to transfer single-GPU
programs to distributed GPU programs:

13

1

2

3

4

 Ring All_Reduce

14

“Bandwidth Optimal All-reduce Algorithms for Cluster of
Workstations” by Patarasuk and Yuan, 2009

1 2

3
4

Divide the data
equal to the
number of
processors in a
ring

Each Node communicates
with two of its peer

 Ring All_Reduce
• The algorithm is bandwidth-optimal
• Each of N nodes communicates with two of its peers 2*(N-1)

times. During this communication, a node sends and receives
chunks of the data buffer

• In the first N-1 iterations, received values are added to the
values in the node’s buffer. In the second N-1 iterations,
received values replace the values held in the node’s buffer

• The ring-allreduce algorithm allows worker nodes to average
gradients and disperse them to all nodes without the need for
a parameter server

• Baidu implemented it using MPI (the source code is available
on Github)

• Horovod uses NCCL library for ring all_reduce implementation

15

Experimentation
• Detailed performance analysis of the Horovod Framework
• We used AlexNet, GoogleNet, and ResNet50 implemented in

Tensorflow
• We used synthetic data
• We used the ImageNet data

• 1.2 million images
• We used batch sizes: 64,128, 256, and 512
• We used K20, K40 GPUs on HPC1 cluster at BNL
• We used Nvidia K80 and P100 GPUs on the Institutional Cluster at

BNL
• 124 worker nodes (about 400 K80 GPUs)
• InfiniBand EDR connectivity

16

AlexNet using Horovod

17

● Throughput performance and latency performance is almost linear
● larger batch size shows the best result

GoogleNet using Horovod

18

● Throughput performance and latency performance is almost linear
● All batch size shows same performance

ResNet50 using Horovod

19

● Throughput performance and latency performance is almost linear
● All batch size shows same performance

Rate of Convergence using
Horovod

20

Using Parameter Server
Tensorflow APIs

21

● Single Master Server which takes
care of the parameter averaging (
gradient update)

● The scalability in poor
● AlexNet has large number of

parameters
● Communication is the main bottleneck

here
● Interesting to do a detailed

performance analysis
● Performance tool for distributed

machine learning is not matured yet
● Working with TAU performance tool

Using Parameter Server
Tensorflow APIs

22

Conclusion
• Scaling deep learning algorithms is critical for Big
Data

• Scaling deep learning with Horovod Framework is
simple and straightforward

• Need to add more abstraction in order to improve the
performance

• Performance can still be improved through
intra-node and internode optimizations

23

Future Work
Hybrid All_Reduce for Parallel
Stochastic Gradient Descent

24

Input / Output Optimization for
DNNs

Future Work
Hyper Parameter Optimization
(HPO) for DNNs

25

Data Layout / Memory Optimization
for Convolutional DNNs

Future Work
Fault Tolerance and Runtime
Adaptivity for DNNs
• Fault tolerance/ Resilience is a big

performance issue in high
performance computing

• Runtime adaptivity to get the best
performance

• Charm++ is a parallel programming
model from UIUC with nice features
to handle fault tolerance and runtime
adaptivity

• Recently, the group introduced
CharmPy for distributed data
analytics

26

Unified Software Stack for DNNs

Acknowledgment

We acknowledge the discussion with the Uber AI
team (Alexander Sergeev) and Google Tensorflow
team

27

Thank You

• Questions!

28

