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Introduction

Where there is a large data, there is a need for deep learning
to process the information!

BIG DATA & DEEP LEARNING
We find Big Data in every Deep
field. Therefore, we find N
great demand of deep
learning in every area

Most Learning
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Why we need High Performance
Computing (HPC) for Deep Learning?

Jeffrey Deans from the Google Tensorflow
Team Shorter “training time” is

* > 1 month ]
important, and we need

« Don’t even try _
HPC for this!
* 1-4 weeks

* High value experiments only

THE #1 PROGRAMMER EXCUSE

* Progress stalls FOR LEGITIMATELY SLACKING OFF:
* 1-4 days “My Model’s Training.”
* Tolerable

* Interactively replaced by running many
experiments in parallel

HEY! GET BACK ™
TO WORK!

 Minutes, Hours
* Interactive research! Instant gratification! ©
* Online learning, training time is crucial
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Parallelizing Deep Learning

e Stochastic gradient descent (often
shortened to SGD), also known as
incremental gradient descent, is an

iterative method for optimizing a
differentiable objective function
 Parallelizing SGD is very hard. It

Is inherently sequential algorithm

1. Start at some state t (point
in a billion dimensional N State t+2
space) Statet ~ otate t+1

2. Introduce t to data batch d1

3. Compute an update ( based
on the objective function)

4. Apply the update — t+1
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Parallelizing Deep Learning
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Parallelizing Deep Learning

Computing
node 1

Computing
node 2
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Scalability Performance

* Three core performance parameters:

* Need to improve the performance by:

* Improving the performance on a node (needs
lot of compiler optimizations)— internal
parallelism

* Improving the time between the two states
(Input/output and communication is a big
challenge)— external parallelism

« Using large batch size
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Noticeable Work in this Area!
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Training time of ResNet-50 (90 epochs) on ImageNet Sr/ The latest
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6

Extremely Large Mini-batch SGD: Training
ResNet-50 on ImageNet in 15 Minutes
Takuya Akiba, Shuji Suzuki, Keisuke Fukuda:

2017
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_— Around 75%  work
accuracy

15min
ImageNet Training in Minutes:Yang
_ You (UC Berkeley), Zhao Zhang
(ThewonpEstezsd | (TACC), Cho-Jui Hsieh (UC Davis),
and James Demmel and Kurt
Keutzer (UC Berkeley) - ICPP
2018

Highly Scalable Deep Learning Training System
with Mixed-Precision: Training ImageNet in
Four Minutes:Xianyan Jia et al. May, 2018
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https://arxiv.org/search?searchtype=author&query=Akiba,+T
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Writing Distributed Deep Learning
Algorithms

* Challenges:

* Deep learning framework or training library must
support inter-node and intra-node communication

* Tensorflow, MxNeT, PyTorch, Caffe, Chainer

* These frameworks come with poorly understood
overheads associated with communication and data
management

* The user must modify the code to take advantage of
iInter-node communication. The changes to code can
be minimal to significant depending on the user’s
expertise in the distributed systems
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Writing Distributed Deep Learning
Algorithms

* Tensorflow supports Parameter Server model

* One needs to change 10% of your code to make
Tensorflow code workable across the nodes

* One needs to tune the code to make it scalable
over large number of nodes

* This requires an expert level knowledge of
parallel programming models and distributed
systems
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Horovod Framework from Uber
Inc.

* From Uber Al Engineering Team in 2017
* Deep learning for self driving cars
* Fraud detection
« Optimal route prediction

* Open-source available at GitHub

* Provides easy and fast way to do
distributed machine learninq using
Tensorflow, PyTourch, and Keras

- Adopted by Cray, IBM, and Microsoft for @ | A HOROVOD

their distributed machine learning
frameworks
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Horovod Framework

* One needs to make few changes to transfer single-GPU
programs to distributed GPU programs:

import tensorflow as tf
import horovod.tensorflow as hvd

# Initialize Horowod
hvd.init ()

# Pin GPU to be used to process local rank (one GPU per process)

/
config = tf.ConfigProto()
ZF__fz,/////////”' config.gpu_options.visible_device_list = str(hvd.local_rank())

# Build model. ..
loss = ...
opt = tf.train.AdagradOptimizer(0.01)

# Add Horowod Distributed Optimizer
_,,,//////////’—ayopt = hvd.DistributedOptimizer (opt)
# Add hook to broadcast wariables from rank 0 to all other processes
# during initialization.
_______”/////////Ihooks = [hvd.BroadcastGlobalVariablesHook(0)]
# Make training operation
train_op = opt.minimize(loss)
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Ring All_Reduce

“Bandwidth Optimal All-reduce Algorithms for Cluster of
Workstations™ by Patarasuk and Yuan, 2009

ssssss

—>
Divide the data
equal to the
number of Each Node communicates
processors in a with two of its peer
ring
—
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Ring All_Reduce

* The algorithm is bandwidth-optimal

 Each of N nodes communicates with two of its peers 2*(N-1)
times. During this communication, a node sends and receives
chunks of the data buffer

* |In the first N-1 iterations, received values are added to the
values in the node’s buffer. In the second N-1 iterations,
received values replace the values held in the node’s buffer

* The ring-allreduce algorithm allows worker nodes to average

gradients and disperse them to all nodes without the need for
a parameter server

« Baidu implemented it using MPI ( the source code is available
on Github)

« Horovod uses NCCL library for ring all_reduce implementation
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Experimentation

 Detailed performance analysis of the Horovod Framework

* We used AlexNet, GoogleNet, and ResNet50 implemented in
Tensorflow

* We used synthetic data
* We used the ImageNet data
1.2 million images
* We used batch sizes: 64,128, 256, and 512
 We used K20, K40 GPUs on HPC1 cluster at BNL

. \éVI\?Lused Nvidia K80 and P100 GPUs on the Institutional Cluster at

« 124 worker nodes (about 400 K80 GPUs)
* InfiniBand EDR connectivity
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AlexNet using Horovod

Alexnet-- Time (sec.) per epoch Scalability of Alexnet- (images/sec vs # GPUs)
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e Throughput performance and latency performance is almost linear
e larger batch size shows the best result
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GoogleNet using Horovod

GOOg'GNet‘ Time(seC‘) per epoch Scalability of GoogleNet-- (images/sec. vs # of GPU)
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e Throughput performance and latency performance is almost linear
e All batch size shows same performance
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ResNet50 using Horovod

ResNet- Time(sec.) per epoch Scalability of ResNet - (images/sec vs. # of GPUS)
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e Throughput performance and latency performance is almost linear
e All batch size shows same performance
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Rate of Convergence using
Horovod

loss vs. Epochs--AlexNet
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Using Parameter Server
Tensorflow APls

. . ALEXNET-images/sec
e Single Master Server which takes

care of the parameter averaging ( s
gradient update)

e The scalability in poor

e AlexNet has large number of :

Q
@
7]
0
Q
o
0
[

parameters £

e Communication is the main bottleneck
here

e Interesting to do a detailed
performance analysis #0f GPUS

e Performance tool for distributed
machine learning is not matured yet
e Working with TAU performance tool
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Using Parameter Server
Tensorflow APls

ResNet50 -- Images/sec GoogleNet - images/sec

#of GPUs #0f GPUs
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Conclusion

» Scaling deep learning algorithms is critical for Big
Data
* Scaling deep learning with Horovod Framework is

simple and straightforward
* Need to add more abstraction in order to improve the
performance

* Performance can still be improved through
Intra-node and internode optimizations
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Future Work

Hybrid All_Reduce for Parallel
Stochastic Gradient Descent

. Inter-group communication

\\( Tree Reduction)

Intra-group

e ———————T
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Input / Output Optimization for
DNNs

CPU Idle

<
<

>
B

Train 1 < > Train 2
Accelerator idle

Time
>
Extract Extract Extract Extract Extract Extract Extract
Step1  Step2 Step 3 Step 4 Step 5 Step 6 Step 7

Train 1 Train 2 Train 4
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Future Work

Hyper Parameter Optimization
(HPO) for DNNs

DNN 1 DNN2 DNN3

\

ship sailboat | | sailboat

\I/

sailboat
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Data

Layout / Memory Optimization

for Convolutional DNNs
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Future Work

Fault Tolerance and Runtime Unified Software Stack for DNNs
Adaptivity for DNNs

* Fault tolerance/ Resilience is a big
performance issue in high
performance computing

* Runtime adaptivity to get the best _ MLFrameworks
berformance O LR AL A —

* Charm++ is a parallel programming
model from UIUC with nice features HOROVOD APIs
to handle fault tolerance and runtime
adaptivity

* Recently, the group introduced
CharmPy for distributed data
analytics
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Thank You

e Questions!
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