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Introduction
Where there is a large data, there is a need for deep learning 
to process the information!
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We find Big Data in every 
field. Therefore, we find 
great demand of deep 
learning in every area



Why we need High Performance 
Computing (HPC) for Deep Learning?

• > 1 month
• Don’t even try

• 1-4 weeks
• High value experiments only
• Progress stalls

• 1-4 days
• Tolerable
• Interactively replaced by running many 

experiments in parallel

• Minutes, Hours
• Interactive research! Instant gratification! ☺

• Online learning, training time is crucial

Shorter “training time” is 
important, and we need 
HPC for this!

Jeffrey Deans from the Google Tensorflow 
Team
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Parallelizing Deep Learning

• Stochastic gradient descent (often 
shortened to SGD), also known as 
incremental gradient descent, is an 
iterative method for optimizing a 
differentiable objective function

• Parallelizing SGD is very hard. It 
is inherently sequential algorithm 
1. Start at some state t (point 

in a billion dimensional 
space)

2. Introduce t to data batch d1
3. Compute an update ( based 

on the objective function)
4. Apply the update → t+1
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Parallelizing Deep Learning
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Data Parallelism Model Parallelism



Parallelizing Deep Learning
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Synchronous

Asynchronous

Centralized Non-Centralized



Scalability Performance 
• Three core performance parameters:

• Throughput : data points/sec
• Latency : completion time for one epoch
• Accuracy: ability to classify unseen cases
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• Need to improve the performance by:
• Improving the performance on a node (needs 

lot of compiler  optimizations)– internal 
parallelism

• Improving the time between the two states 
(Input/output and communication is a big 
challenge)— external parallelism

• Using large batch size



Noticeable Work in this Area!

Extremely Large Mini-batch SGD: Training 
ResNet-50 on ImageNet in 15 Minutes
Takuya Akiba, Shuji Suzuki, Keisuke Fukuda: 
2017

Around 75% 
accuracy
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Highly Scalable Deep Learning Training System 
with Mixed-Precision: Training ImageNet in 
Four Minutes:Xianyan Jia et al.  May, 2018

The latest 
work

ImageNet Training in Minutes:Yang 
You (UC Berkeley), Zhao Zhang 
(TACC), Cho-Jui Hsieh (UC Davis), 
and James Demmel and Kurt 
Keutzer (UC Berkeley) - ICPP 
2018

https://arxiv.org/search?searchtype=author&query=Akiba,+T
https://arxiv.org/search?searchtype=author&query=Suzuki,+S
https://arxiv.org/search?searchtype=author&query=Fukuda,+K


Writing Distributed Deep Learning 
Algorithms

• Challenges:
• Deep learning framework or training library must 

support inter-node and intra-node communication
• Tensorflow, MxNeT, PyTorch, Caffe, Chainer
• These frameworks come with poorly understood 

overheads associated with communication and data 
management

• The user must modify the code to take advantage of 
inter-node communication. The changes to code can 
be minimal to significant depending on the user’s 
expertise in  the distributed systems
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Writing Distributed Deep Learning
Algorithms

• Tensorflow supports Parameter Server model 
• One needs to change 10% of your code to make 

Tensorflow code workable across the nodes
• One needs to tune the code to make it scalable 

over large number of nodes
• This requires an expert level knowledge of 

parallel programming models and distributed 
systems
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Horovod Framework from Uber 
Inc.
• From Uber AI Engineering Team in 2017

• Deep learning for self driving cars
• Fraud detection
• Optimal route prediction

• Open-source available at GitHub
• Provides easy and fast way to do 

distributed machine learning using 
Tensorflow, PyTourch, and Keras

• Adopted by Cray, IBM,  and Microsoft for 
their distributed machine learning 
frameworks
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Horovod Framework
• One needs to make few changes to transfer single-GPU 
programs to distributed GPU programs:
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 Ring All_Reduce

14

“Bandwidth Optimal All-reduce Algorithms for Cluster of 
Workstations” by Patarasuk and Yuan, 2009

1 2

3
4

Divide the data 
equal to the 
number of 
processors in a 
ring

Each Node communicates 
with two of its peer



  Ring All_Reduce
• The algorithm is bandwidth-optimal
• Each of N nodes communicates with two of its peers 2*(N-1) 

times. During this communication, a node sends and receives 
chunks of the data buffer

• In the first N-1 iterations, received values are added to the 
values in the node’s buffer. In the second N-1 iterations, 
received values replace the values held in the node’s buffer

• The ring-allreduce algorithm allows worker nodes to average 
gradients and disperse them to all nodes without the need for 
a parameter server

• Baidu implemented it using MPI ( the source code is available 
on Github)

• Horovod uses NCCL library for ring all_reduce implementation
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Experimentation
• Detailed performance analysis of the Horovod Framework
• We used AlexNet, GoogleNet, and ResNet50  implemented in 

Tensorflow
• We used synthetic data
• We used the ImageNet data 

• 1.2 million images
• We used batch sizes: 64,128, 256, and 512
• We used K20, K40 GPUs on HPC1 cluster at BNL
• We used Nvidia K80 and P100 GPUs on the Institutional Cluster at 

BNL
• 124 worker nodes (about 400 K80 GPUs)
• InfiniBand EDR connectivity
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AlexNet using Horovod
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● Throughput performance and latency performance is almost linear
● larger batch size shows the best result



GoogleNet using Horovod
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● Throughput performance and latency performance is almost linear
● All batch size shows same performance



ResNet50 using Horovod
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● Throughput performance and latency performance is almost linear
● All batch size shows same performance



Rate of Convergence using 
Horovod
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Using  Parameter Server 
Tensorflow APIs
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● Single  Master Server  which takes 
care of the parameter averaging ( 
gradient update)

● The scalability in  poor 
● AlexNet has large number of 

parameters
● Communication is the main bottleneck 

here
● Interesting to do a detailed 

performance analysis
● Performance tool for distributed 

machine learning is not matured yet
● Working with TAU performance tool



Using Parameter Server 
Tensorflow APIs
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Conclusion
• Scaling deep learning algorithms is critical for Big 
Data

• Scaling  deep learning with Horovod Framework is 
simple and straightforward

• Need to add more abstraction in order to improve the 
performance 

• Performance can still be improved  through 
intra-node and internode optimizations
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Future Work
Hybrid All_Reduce for Parallel 
Stochastic Gradient Descent

24

Input / Output Optimization for 
DNNs



Future Work
Hyper Parameter Optimization 
(HPO) for DNNs
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Data Layout / Memory Optimization 
for  Convolutional DNNs



Future Work
Fault Tolerance and Runtime 
Adaptivity for DNNs
• Fault tolerance/ Resilience is a big 

performance issue in high 
performance computing

• Runtime adaptivity to get the best 
performance 

• Charm++ is a parallel programming 
model from UIUC with nice features 
to handle fault tolerance and runtime 
adaptivity

• Recently, the group introduced 
CharmPy for distributed data 
analytics
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Unified Software Stack for DNNs 
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Thank You

• Questions!
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