| Detalled Performance AnaIySIS of
Distributed Tensorflow on a GPU
Cluster using Deep Learning Algorithms

Abid Malik, Yuewei Lin, Shinjae Yoo, Nathaniel Wang, and
Michael Lu

Computer Science and Mathematics Department
Computational Science Initiative

NYSDS 2018 BROOKHEVEN

NATIONAL LABORATORY

'~‘:\ N =7, =
N\ SRR Sle)

U.S. DEPARTMENT OF
5| pi
Y/ ENERGY
T

Outline

ntroduction

Distributed Deep Neural Networks
Horovod Framework

Detailed Performance Analysis
Conclusion and Future Work

BROOKHFAEN
NATIONAL LABORATORY

Introduction

Where there is a large data, there is a need for deep learning
to process the information!

BIG DATA & DEEP LEARNING
We find Big Data in every Deep
field. Therefore, we find N
great demand of deep
learning in every area

Most Learning

Performance

Algorithms
ANALYTIESB | G o
= INElUI][
HUNI]R[[]S“‘ YSI SIZ
D AT A PARMLEL = v
Amount of Data
®)ENERGY - BROOKHAUEN

Why we need High Performance
Computing (HPC) for Deep Learning?

Jeffrey Deans from the Google Tensorflow
Team Shorter “training time” is

* > 1 month]
important, and we need

« Don’t even try _
HPC for this!
* 1-4 weeks

* High value experiments only

THE #1 PROGRAMMER EXCUSE

* Progress stalls FOR LEGITIMATELY SLACKING OFF:
* 1-4 days “My Model’s Training.”
* Tolerable

* Interactively replaced by running many
experiments in parallel

HEY! GET BACK ™
TO WORK!

 Minutes, Hours
* Interactive research! Instant gratification! ©
* Online learning, training time is crucial

BROOKHFAEN

4 NATIONAL LABORATORY

Parallelizing Deep Learning

e Stochastic gradient descent (often
shortened to SGD), also known as
incremental gradient descent, is an

iterative method for optimizing a
differentiable objective function
 Parallelizing SGD is very hard. It

Is inherently sequential algorithm

1. Start at some state t (point
in a billion dimensional N State t+2
space) Statet ~ otate t+1

2. Introduce t to data batch d1

3. Compute an update (based
on the objective function)

4. Apply the update — t+1

:.‘-"~‘ 1 U.S. DEPARTMENT OF &
@c EN ERGY 5 N?TIIE)?glng%‘HTE O"RY

Parallelizing Deep Learning

Data Parallelism

Training Data

Batch 1

Batch 2

Batch 3

Batch 4

GPU1 / GP&

Convolution Convolution
RelU Gradients RelU
Convolution Convolution
RelU RelU
Outvput Output
Evaluate /
'ENERGY

Model Parallelism

Training Data

Batch 1

Batch 2

GPU1 v

Convolution

RelU

Convolution

RelU

GPU2 *

Output

Y

Evaluate

Gradients

-

-

BROOKHFAEN

NATIONAL LABORATORY

Parallelizing Deep Learning

Computing
node 1

Computing
node 2

Computing
node 3

Computing
node 4

Synchronous

=
@ @ =)
- B® B=

Computing
node 1

Computing
node 2

Computing
node 3

Computing
node 4

=S

Sl

U.S. DEPARTMENT OF

@ENERGY

Asynchronous

Parameter
server form

Parameter server

Update

Model

Computing nodes

Centralized

Nonparametric
server form

Computing nodes

Update

Update

Computing nodes

Non-Centralized

NATIONAL LABORATORY

Scalability Performance

* Three core performance parameters:

* Need to improve the performance by:

* Improving the performance on a node (needs
lot of compiler optimizations)— internal
parallelism

* Improving the time between the two states
(Input/output and communication is a big
challenge)— external parallelism

« Using large batch size

{(©)ENERGY BROOKHEAEN

NATIONAL LABORATORY

Noticeable Work in this Area!

e

[)
etGIYS /af
Training time of ResNet-50 (90 epochs) on ImageNet Sr/ The latest

Time [min]

70

60

50

40

30

20

10

0

62min.
60min.

50min.

31min.

Goyaletal. Codreanuetal. Choetal. You et al.

(Facebook) (IBM)
6

Extremely Large Mini-batch SGD: Training
ResNet-50 on ImageNet in 15 Minutes
Takuya Akiba, Shuji Suzuki, Keisuke Fukuda:

2017

#5%%, U.S. DEPARTMENT OF

{@)ENERGY

_— Around 75% work
accuracy

15min
ImageNet Training in Minutes:Yang
_ You (UC Berkeley), Zhao Zhang
(ThewonpEstezsd | (TACC), Cho-Jui Hsieh (UC Davis),
and James Demmel and Kurt
Keutzer (UC Berkeley) - ICPP
2018

Highly Scalable Deep Learning Training System
with Mixed-Precision: Training ImageNet in
Four Minutes:Xianyan Jia et al. May, 2018

BROOKHFAEN

NATIONAL LABORATORY

https://arxiv.org/search?searchtype=author&query=Akiba,+T
https://arxiv.org/search?searchtype=author&query=Suzuki,+S
https://arxiv.org/search?searchtype=author&query=Fukuda,+K

Writing Distributed Deep Learning
Algorithms

* Challenges:

* Deep learning framework or training library must
support inter-node and intra-node communication

* Tensorflow, MxNeT, PyTorch, Caffe, Chainer

* These frameworks come with poorly understood
overheads associated with communication and data
management

* The user must modify the code to take advantage of
iInter-node communication. The changes to code can
be minimal to significant depending on the user’s
expertise in the distributed systems

,_;-’-‘-'1-;_: , U-S. DEPARTMENT OF 5
EN ERGY NE‘IIE)?R ls/!gg)"l{"ATE O"RY

Writing Distributed Deep Learning
Algorithms

* Tensorflow supports Parameter Server model

* One needs to change 10% of your code to make
Tensorflow code workable across the nodes

* One needs to tune the code to make it scalable
over large number of nodes

* This requires an expert level knowledge of
parallel programming models and distributed
systems

,_;-"-‘-'1-;_;. , U-S. DEPARTMENT OF 5
EN ERGY NE‘IIE)?H lS/!gg)"R"ATE O"RY

Horovod Framework from Uber
Inc.

* From Uber Al Engineering Team in 2017
* Deep learning for self driving cars
* Fraud detection
« Optimal route prediction

* Open-source available at GitHub

* Provides easy and fast way to do
distributed machine learninq using
Tensorflow, PyTourch, and Keras

- Adopted by Cray, IBM, and Microsoft for @ | A HOROVOD

their distributed machine learning
frameworks

BROOKHFAEN

12 NATIONAL LABORATORY

Horovod Framework

* One needs to make few changes to transfer single-GPU
programs to distributed GPU programs:

import tensorflow as tf
import horovod.tensorflow as hvd

Initialize Horowod
hvd.init ()

Pin GPU to be used to process local rank (one GPU per process)

/
config = tf.ConfigProto()
ZF__fz,/////////”' config.gpu_options.visible_device_list = str(hvd.local_rank())

Build model. ..
loss = ...
opt = tf.train.AdagradOptimizer(0.01)

Add Horowod Distributed Optimizer
_,,,//////////’—ayopt = hvd.DistributedOptimizer (opt)
Add hook to broadcast wariables from rank 0 to all other processes
during initialization.
_______”/////////Ihooks = [hvd.BroadcastGlobalVariablesHook(0)]
Make training operation
train_op = opt.minimize(loss)

&5 %%, U.S. DEPARTMENT OF
o) BROOKHFIAEN
< 3 _,‘\v"'" ’] 3 NATIO?AnL LABORATORY

Ring All_Reduce

“Bandwidth Optimal All-reduce Algorithms for Cluster of
Workstations™ by Patarasuk and Yuan, 2009

ssssss

—>
Divide the data
equal to the
number of Each Node communicates
processors in a with two of its peer
ring
—

BROOKHFAEN

14 NATIONAL LABORATORY

Ring All_Reduce

* The algorithm is bandwidth-optimal

 Each of N nodes communicates with two of its peers 2*(N-1)
times. During this communication, a node sends and receives
chunks of the data buffer

* |In the first N-1 iterations, received values are added to the
values in the node’s buffer. In the second N-1 iterations,
received values replace the values held in the node’s buffer

* The ring-allreduce algorithm allows worker nodes to average

gradients and disperse them to all nodes without the need for
a parameter server

« Baidu implemented it using MPI (the source code is available
on Github)

« Horovod uses NCCL library for ring all_reduce implementation

BROOKHFAEN

NATIONAL LABORATORY

Experimentation

 Detailed performance analysis of the Horovod Framework

* We used AlexNet, GoogleNet, and ResNet50 implemented in
Tensorflow

* We used synthetic data
* We used the ImageNet data
1.2 million images
* We used batch sizes: 64,128, 256, and 512
 We used K20, K40 GPUs on HPC1 cluster at BNL

. \éVI\?Lused Nvidia K80 and P100 GPUs on the Institutional Cluster at

« 124 worker nodes (about 400 K80 GPUs)
* InfiniBand EDR connectivity

BROOKHFAEN

NATIONAL LABORATORY

AlexNet using Horovod

Alexnet-- Time (sec.) per epoch Scalability of Alexnet- (images/sec vs # GPUs)
6000 B 512 100000 = 512
B 256 - 256
128 126
75000
4000
e g
\q"’: g 50000
(] [J]
E =
= 2000 E
25000
L 0
1 2 4 8 16 32 64 128 256 50 100 150 200 250
§PYs #0f GPUs

e Throughput performance and latency performance is almost linear
e larger batch size shows the best result

U.S. DEPARTMENT OF

{2)ENERGY . BROOKHRVEN

GoogleNet using Horovod

GOOg'GNet‘ Time(seC‘) per epoch Scalability of GoogleNet-- (images/sec. vs # of GPU)
20000 R0 .
15000 28

g §

», 10000 g

£)

g E

£
5000

- 4 I - b4 12 256
#of GPUs .

e Throughput performance and latency performance is almost linear
e All batch size shows same performance

§ U.S. DEPARTMENT OF

'ENERGY BROOKHFVEN

18 NATIONAL LABORATORY

ResNet50 using Horovod

ResNet- Time(sec.) per epoch Scalability of ResNet - (images/sec vs. # of GPUS)
40000 B o4 12500 - (4
W 256 - 256
128 10000 12
30000
- o 7500
(8] (]
Q 4]
@ 20000 P
b V]
: 2 s
= g 2000
10000 /
2500
0 0
2 4 8 16 2 64 2 6 50 100 150)0 0
#0f GPUs #0f GPUs
e Throughput performance and latency performance is almost linear
e All batch size shows same performance
"'-'»: U.S. DEPARTMENT OF Bnnoxﬂﬂ‘,["

19 NATIONAL LABORATORY

Rate of Convergence using
Horovod

loss vs. Epochs--AlexNet

—‘;

S€
w
vl
Qo

Epochs

BROOKHFAEN
20 NATIONAL LABORATORY

Using Parameter Server
Tensorflow APls

. . ALEXNET-images/sec
e Single Master Server which takes

care of the parameter averaging (s
gradient update)

e The scalability in poor

e AlexNet has large number of :

Q
@
7]
0
Q
o
0
[

parameters £

e Communication is the main bottleneck
here

e Interesting to do a detailed
performance analysis #0f GPUS

e Performance tool for distributed
machine learning is not matured yet
e Working with TAU performance tool

D ENERGY BROOKHFAVEN
3 B .
\/ENERGY

A

NATIONAL LABORATORY

Using Parameter Server
Tensorflow APls

ResNet50 -- Images/sec GoogleNet - images/sec

#of GPUs #0f GPUs

BROOKHFAEN

22 NATIONAL LABORATORY

Conclusion

» Scaling deep learning algorithms is critical for Big
Data
* Scaling deep learning with Horovod Framework is

simple and straightforward
* Need to add more abstraction in order to improve the
performance

* Performance can still be improved through
Intra-node and internode optimizations

BROOKHFAEN
NATIONAL LABORATORY

Future Work

Hybrid All_Reduce for Parallel
Stochastic Gradient Descent

. Inter-group communication

\\(Tree Reduction)

Intra-group

e ———————T

U.S. DEPARTMENT OF

Y/ENERGY

Input / Output Optimization for
DNNs

CPU Idle

<
<

>
B

Train 1 < > Train 2
Accelerator idle

Time
>
Extract Extract Extract Extract Extract Extract Extract
Step1 Step2 Step 3 Step 4 Step 5 Step 6 Step 7

Train 1 Train 2 Train 4

- BROOKHFAVEN

NATIONAL LABORATORY

Future Work

Hyper Parameter Optimization
(HPO) for DNNs

DNN 1 DNN2 DNN3

\

ship sailboat | | sailboat

\I/

sailboat

U.S. DEPARTMENT OF

JENERGY
LN

Data

Layout / Memory Optimization

for Convolutional DNNs

100%
90%
80% -
70%
60% -
50%
40%
30%-
20% -
10%-

0%+

25

GoogLeNet (GPU)

u Split

B SoftmaxWithLoss
ReLu

B Pooling
LRN

B InnerProduct

B Dropout

i Convolution

B Concat

128 64
hatch size

NATIONAL LABORATORY

Future Work

Fault Tolerance and Runtime Unified Software Stack for DNNs
Adaptivity for DNNs

* Fault tolerance/ Resilience is a big
performance issue in high
performance computing

* Runtime adaptivity to get the best _ MLFrameworks
berformance O LR AL A —

* Charm++ is a parallel programming
model from UIUC with nice features HOROVOD APIs
to handle fault tolerance and runtime
adaptivity

* Recently, the group introduced
CharmPy for distributed data
analytics

..............
@ENERGY - BROOKHAVEN

e

Acknowledgment

We acknowledge the discussion with the Uber Al

team (Alexander Sergeev) and Google Tensorflow
team

BROOKHFAEN
NATIONAL LABORATORY

Thank You

e Questions!

BROOKHFAEN
28 NATIONAL LABORATORY

