Detailed Performance Analysis of Distributed Tensorflow on a GPU Cluster using Deep Learning Algorithms

Abid Malik, Yuewei Lin, Shinjae Yoo, Nathaniel Wang, and Michael Lu

Computer Science and Mathematics Department

Computational Science Initiative

NYSDS 2018

Outline

- Introduction
- Distributed Deep Neural Networks
- Horovod Framework
- Detailed Performance Analysis
- Conclusion and Future Work

Introduction

Where there is a large data, there is a need for deep learning to process the information!

BIG DATA & DEEP LEARNING We find Big Data in every Deep Learning field. Therefore, we find great demand of deep Performance learning in every area Most Learning Algorithms Amount of Data

Why we need High Performance Computing (HPC) for Deep Learning?

Jeffrey Deans from the Google Tensorflow Team

- Team • > 1 month
 - Don't even try
 - 1-4 weeks
 - High value experiments only
 - Progress stalls
 - 1-4 days
 - Tolerable
 - Interactively replaced by running many experiments in parallel
 - Minutes, Hours
 - Interactive research! Instant gratification! ☺
 - Online learning, training time is crucial

Shorter "training time" is important, and we need HPC for this!

Parallelizing Deep Learning

- Stochastic gradient descent (often shortened to SGD), also known as incremental gradient descent, is an iterative method for optimizing a differentiable objective function
- Parallelizing SGD is very hard. It is inherently sequential algorithm
 - 1. Start at some state **t** (point in a billion dimensional space)
 - 2. Introduce **t** to data batch **d1**
 - 3. Compute an update (based on the objective function)
 - 4. Apply the update \rightarrow **t+1**

Parallelizing Deep Learning

Model Parallelism

Parallelizing Deep Learning

U.S. DEPARTMENT OF ENERGY

Scalability Performance

- Three core performance parameters:
 - Throughput : data points/sec
 - Latency : completion time for one epoch
 - Accuracy: ability to classify unseen cases
- Need to improve the performance by:
 - Improving the performance on a node (needs lot of compiler optimizations)— internal parallelism
 - Improving the time between the two states (Input/output and communication is a big challenge)— external parallelism
 - Using large batch size

Noticeable Work in this Area!

17

BROOKHAVEN NATIONAL LABORATORY

Writing Distributed Deep Learning Algorithms

• Challenges:

- Deep learning framework or training library must support inter-node and intra-node communication
- Tensorflow, MxNeT, PyTorch, Caffe, Chainer
- These frameworks come with poorly understood overheads associated with communication and data management
- The user must modify the code to take advantage of inter-node communication. The changes to code can be minimal to significant depending on the user's expertise in the distributed systems

Writing Distributed Deep Learning Algorithms

- Tensorflow supports Parameter Server model
- One needs to change 10% of your code to make Tensorflow code workable across the nodes
- One needs to tune the code to make it scalable over large number of nodes
- This requires an expert level knowledge of parallel programming models and distributed systems

Horovod Framework from Uber Inc.

- From Uber AI Engineering Team in 2017
 Deep learning for self driving cars

 - Fraud detection
 - Optimal route prediction
- Open-source available at GitHub
- Provides easy and fast way to do distributed machine learning using Tensorflow, PyTourch, and Keras
- Adopted by Cray, IBM, and Microsoft for their distributed machine learning frameworks

Horovod Framework

• One needs to make few changes to transfer single-GPU programs to distributed GPU programs:

Ring All_Reduce

"Bandwidth Optimal All-reduce Algorithms for Cluster of Workstations" by Patarasuk and Yuan, 2009

Ring All_Reduce

- The algorithm is bandwidth-optimal
- Each of N nodes communicates with two of its peers 2*(N-1) times. During this communication, a node sends and receives chunks of the data buffer
- In the first N-1 iterations, received values are added to the values in the node's buffer. In the second N-1 iterations, received values replace the values held in the node's buffer
- The ring-allreduce algorithm allows worker nodes to average gradients and disperse them to all nodes without the need for a parameter server
- Baidu implemented it using MPI (the source code is available on Github)
- Horovod uses **NCCL** library for ring all_reduce implementation

Experimentation

- Detailed performance analysis of the Horovod Framework
- We used AlexNet, GoogleNet, and ResNet50 implemented in Tensorflow
- We used synthetic data
- We used the ImageNet data
 - 1.2 million images
- We used batch sizes: 64,128, 256, and 512
- We used K20, K40 GPUs on HPC1 cluster at BNL
- We used Nvidia K80 and P100 GPUs on the Institutional Cluster at BNL
- 124 worker nodes (about 400 K80 GPUs)
- InfiniBand EDR connectivity

AlexNet using Horovod

- Throughput performance and latency performance is almost linear
- larger batch size shows the best result

GoogleNet using Horovod

Scalability of GoogleNet -- (images/sec. vs # of GPU)

- Throughput performance and latency performance is almost linear .
- All batch size shows same performance

ResNet50 using Horovod

- Throughput performance and latency performance is almost linear
- All batch size shows same performance

Rate of Convergence using Horovod

loss vs. Epochs--AlexNet

Epochs

Using Parameter Server Tensorflow APIs

- Single Master Server which takes care of the parameter averaging (gradient update)
- The scalability in poor
- AlexNet has large number of parameters
- Communication is the main bottleneck here
- Interesting to do a detailed performance analysis
- Performance tool for distributed machine learning is not matured yet
- Working with TAU performance tool

Using Parameter Server Tensorflow APIs

GoogleNet -- images/sec

Conclusion

- Scaling deep learning algorithms is critical for Big Data
- Scaling deep learning with Horovod Framework is simple and straightforward
 - Need to add more abstraction in order to improve the performance
- Performance can still be improved through intra-node and internode optimizations

Future Work

Hybrid All_Reduce for Parallel Stochastic Gradient Descent

Input / Output Optimization for DNNs

Future Work

Hyper Parameter Optimization (HPO) for DNNs

Data Layout / Memory Optimization for Convolutional DNNs

GoogLeNet (GPU)

Future Work

Fault Tolerance and Runtime Adaptivity for DNNs

- Fault tolerance/ Resilience is a big performance issue in high performance computing
- Runtime adaptivity to get the best performance
- Charm++ is a parallel programming model from UIUC with nice features to handle fault tolerance and runtime adaptivity
- Recently, the group introduced CharmPy for distributed data analytics

Unified Software Stack for DNNs

Acknowledgment

We acknowledge the discussion with the Uber AI team (Alexander Sergeev) and Google Tensorflow team

Thank You

• Questions!

