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Definition of provenance

Provenance in Computer Science is defined as the record of
data lineage and software processes operating on this data
that enable interpreting, validating and reproducing results.
In experimental science, provenance also includes
experimental conditions, calibrations, notebooks, etc.

:bar chart
a prov:Entity;
prov:wasGeneratedBy :illustrationActivity:’
prov:wasDerivedFrom :aggregatedByRegions;
prov:wasAttributedTo :derek:

:graduation
a prov:Activity, :Graduation;
prov:startedAtTime "2012-04-15T13:00:00-04:00"""xsd:dateTime;
prov:used :ms_smith;
prov:generated :doctor_smith:

prov:endedAtTime “2012-04-15T14:30:00-04:00"""xsd:dateTime’
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Uses of Provenance in HPC

* Performance Investigation and optimization
* Where are the performance anomalies coming from?
* Which workflow component, node, function?

« Can | quickly find the environmental conditions where anomalies are
detected?

« Has a similar error been encountered before?
* In previous runs?

. Ha\{?e the HW and SW stack on this system changed since my last
run’
* Reproducibility
« What version of the application/workflow did this run use?
« Which libraries did | use previously?
» What configuration switches did | use?

* What results do | obtain if | run the same workflow again?

» What happens to performance if | run the same configuration on another
system?

» Where are the trade-offs between accuracy and performance?
» Can | establish thresholds of reproducibility?
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Interdependencies between
= ) parallel components at
What is a workflow™ s
Performance of each
individual component can

Simfatr Simiatr ‘ affect overall performance of
T a workflow
contains contains
Ijﬂlzlmede:;CUtable | s || sl | Performance metrics are
o - J‘ measurements from workflow
Cooeragen | s e and system resources
v . . A 4
SRR fe——] Rl n, N n,
has
Action: e.g. Action: e.g.
exlulion Slechaion
Data Transfer Data Transfer

Courtesy: Kleese van Dam, K., et al., Enabling Structured Exploration of Workflow Performance Variability in
Extreme-Scale Environments, Proc. 8th Workshop in Many-Task Computing on Clouds, Grids, and
Supercomputers (MTAGS) collocated with SC 2015.
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Basic example and mini-app: the heat
transfer equation

FLEXPATH
or MPI
or Dataspace

Problem size
Output freq.
N,

Reduction method,
Accuracy

heat.bp

I B AN Reducer: J__*
Application: J_ Transport | adios write
Heat Transfer N, processes

N, processes ———
Swift I DS |

staged.bp

1 process 1 process (if Dataspaces used)

ADI&s
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Use Case: NWChem MD

* MD simulates pH 8 es oat
« Conformational changes of et .
biomolecules

* Transport processes
 Try to find statistics and key
points

* Processes involve 37 i
 Many atoms (~1 million) PH 6 B
« Long time scales (us) -

« Many time steps (~1 billion) [—M o

* Shown s

* Transmembrane Calcium
channel

« Regulated by pH ST

» Plays a role in plant draught
response SP_WTTRJ

awil]

ANA_RDFRAM

ANA_RDFRAM

SP_WTTRJ ANA_RDFRAM
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Challenges

- Volume of performance data is too large R
manual inspection

* Provenance is very verbose, hard to extract and
understand

* Memory is limited — not all data points can be saved
« Streaming methods for anomaly detection are needed

Prescriptive Provenance

Events (anomalies) and a time series rolling window of
preceding events are extracted and stored

The provenance of these events selected for retention by
the anomaly detection and retained for a time window
preceding the occurrence of the events
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Chimbuko overview architecture

Chimbuko monitors workflow

execution, extracts provenance and g::r:;y
VISU8|IZG data <:f$§§1;> % detection
ADIOS orchestrates workflows (blue I 5
. . . | rovenance
line) and provides data streaming ;‘gg:;ﬂv ______ \ - Database
TAQ provides performance metrics Chimbuko
for instrumented components 1 & 2
TAU extracts provenance metadata
and trace data (green lines)
SOSFlow stores and aggregates the
data at each node \éV:;k;:;\:: ADIOS \CI:Vorkflow
. . ompone
Trace data is dyqamlcal!y analyzed e ADIWs e
to detect anomalies (solid red line)
Selected metadata and trace data is _ _
Data streaming/ workflow execution

stored (e.g., time window for which
trace event is interesting) (dashed
red lines)
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The Adaptable |10 System (ADIOS)

* Provides portable, fast, ADI@S
scalable, easy-to-use,
metadata rich output

« Key feature: /O abstraction Dragin Read AP

¢ Optlmlzed hlgh' D::aansform - Transform
. Plugin
performance write and
read A b

 Data transformation:
iIndexing and compression

 Data connection via
staging, WAN, etc.

Plugin Write API

Courtesy of Jong Choi, Workflow Case Studies, EPSi Data Processing and Experimental Data Processing Workflows
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TAU performance system

g~ sOs

* TAU Performance
System® measures
iInstrumented application
regions, library calls

* OpenMP regions, MPI

functions, I/O libraries
(POSIX, ADIOS)

 Time and hardware
counters of interest
(cache misses, FLOPSs)

 Metadata from the
execution

Compute Nodes

Application Application
(@) (=
client client

Application

Application

=
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SOSFlow aggregation

- . =0=
» SOS client plugins, %
|iStenerS and Compute Nodes Ag[\?rzg?ti)on
Application Application ode(s
aggregators [TAU } [ ﬂ —
periodically aggregate DB

performance data from
all applications

 Maintains cache of N ' } >
{ Application }[ Application }

most recent frames of
data

» Optional storage to
key/value store
database
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SOSFlow and Anomaly Detection

=0 =

« SOS extraction client

periodically reads trace Aggregation
data and exports it over e
ADIOS to be read by —
anomaly detection

analysis

* If/when anomaly
detected, a second
extraction client is
launched to export full

window of trace data ‘ v
leading up to anomalous m Anomaly |7
event Detection ADIOS
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Prescriptive Provenance Window

* We keep all the (static) provenance metadata for
each run

* We keep all the performance metrics for a window
preceding the anomalies

 Prescriptive provenance is the provenance of
events selected for retention by anomaly
detection
* Anomaly detection prescribes the events to be stored.
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Offline Anomaly Detection: Local
Outlier Factor (LOF)

Reachability distance from o’ to o:

reachdisty(o « o') = max{disty(0), dist(o,0")}

« where K is a user-specified parameter _ , ,
dist,(0): the distance between data point o

and its kth nearest neighbor (kth-NN)

Local reachabilitv densitv of o:
I.*'d;;(o) _ H*’T\‘Tk(o)H/' k

P reachdistp(o’ — o
Zo ENw(o)

N,(0): the set of k nearest neighbors of
data point o

LOF (Local outlier factor) of an object o is the average of the ratio of local
reachability of o and those of 0’s k-nearest neighbors

Irdy(o’)
Zo’eNk(o) Irdi(o)

LOFj (o) = INA(O)] Z lrdy (o) - Z reachdisty (o' «— o) Higher LOF
kL0 o’eNy (o) o’'eNy (o) — Va/ue 9
«  The lower the local reachability density of o, and the higher the local Higher
reachability density of the kNN of o, the higher LOF proﬂt?ability to be
« This captures a local outlier whose local density is relatively low comparing to outier
the local densities of its KNN -
14
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Online Anomaly Detection:

Incremental Local Outlier Factor
(iLOF)

« LOF: Requires the entire data set to compute  Algorithm 1. iLOF Insertion

1. Input: a data point p; at time ¢
LOF Values 2. Output: LOF value LOF (p;)
. . . N v and k — distance(p;
- iLOF: Can compute the outlier factor for each (o e\ et et
incoming data point (can be used for data 5. iofmpute reach — dist(p;, 0) reine Fanatinn (1)
6. end for
StreamS) 7. Supdate — RN(y, 1ithe set of reverse k-NNs of p;}
. . . 8. forallo € Sypdate and q € N, 1) do
° FOF eaCh |ncom|ng data p0|nt p, perform an 9. Update k — distance(o) and reach — dist(q, o)
|LOF Insertlon 10. ifoe Nigr) then
. ) 11. SH])(‘](Ifﬁ < Oupdate U {(1}
» Find p’s k-nearest neighbors (k-NNs) i; Zn? if
. end for
« Compute LOF of p based on the outlier 14.  forallo € Sypue do
factors of its k-NNs 15. U};date Ird(o) and LOF({RN,)})
16. end for
« Update the k-NNs of past data points along 17.  Compute lrd(p;) and LOF (p;)
with their LOFs (if needed) 18. return LOF

However, iLOF still suffers from large memory requirements, since all past data points need to be retained
to compute the outlier factor for each new incoming data point (for high accurate of outlier factor value)

"< %% U.S. DEPARTMENT OF -
() Y /9
\U/ENERG

’ Data. Exancaie.

S gy T

t\(C\\)I—’ O BROOKHAVEN

NATIONAL LABORATORY

EXASCALE COMPUTING PROJECT
UNIVERSITY

(7 OF OREGON



Online Anomaly Detection: Limited
Memory incremental LOF (MiLOF)

1. Summarization

» After incoming points reaches memory limit

« Build a summary over the past data points (i.e., k-distance, Ird, LOF) based on K-
means

Delete these data points from the memory

» Not necessarily to find clusters exactly, but aims to find similar data points to
represent average of original data points

2. Merging

» After summarization, new generated cluster centers will be merged with existing
cluster centers by using weighted clustering algorithm

» Weights are based on their numbers of points before summarization
3. Updating

» Update k-distance, Ird, LOF based on merged clusters

MILOF: Fast Memory Efficient Local Outlier Detection in Data Streams, Mahsa Salehi, Christopher Leckie, James C.
Bezdek, Tharshan Vaithianathan, and Xuyun Zhang. IEEE Transactions on Knowledge and Data Engineering, 28:12, 2016

oy \
G ENERGY AR t\(L\}I—’ O BROOKHAVEN

NATIONAL LABORATORY

EXASCALE COMPUTING PROJECT
Sy P

UNIVERSITY
OF OREGON




Data reduction with provenance

» Data set: LAMMPS data subset
Events « Event: function:
of vOoidLAMMPS_NS::Run::command(int,char
interest **):voidLAMMPS _NS::Verlet::run(int):MPI_
Wait()
» Parameters
* Anomalies rate: 1%
* No. of nearest neighbors: 4
* Memory limit size: 128
* Summarization size: 64

reduction
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Extracted Provenance

[1 1 100 nan nan nan nan nan nan 1529097196656293 3]
[1 110 1 nan nan nan nan nan nan 1529097196656433 4]
[1 1 1 02 nan nan nan nan nan nan 1529097196656630 5]

What doeS |t mea n ? [1 3 1 0 0 nan nan nan nan nan nan 1529097196660985 6]

[1 3 10 1 nan nan nan nan nan nan 1529097196661109 7]
[1 3 102 nan nan nan nan nan nan 1529097196661243 8]
Wh at d O We kee p? [121 00 nan nan nan nan nan nan 1529097196663663 9]
[121 0 1 nan nan nan nan nan nan 1529097196663759 10]
**** Print info **** [12 1 0 2 nan nan nan nan nan nan 1529097196663882 11]
>>> Number of attributes = 506 [1 01 12 nan nan nan nan nan nan 1529097196694382 12]
>>>506 names and values of attributes = [1 31 12 nan nan nan nan nan nan 1529097196694490 13]
program_name 0  b'/home/khuck/src/Example-Heat_Transfer/stage_write/st: [1 0 0 nan nan 0 91802 nan nan nan nan 1529097196694678 14]
MetaData:0:0:0:CPU Cores b'4' [1 0 0 nan nan 1 16484 nan nan nan nan 1529097196694812 15]
MetaData:0:0:0:CPU MHz  b'2000.000' [1 3 0 nan nan 0 91802 nan nan nan nan 1529097196694826 16]
MetaData:0:0:0:CPU Type b'Intel(R) Xeon(R) CPU X5355 @ 2.66GHz' [1 1112 nan nan nan nan nan nan 1529097196694855 17]
MetaData:0:0:0:CPU Vendor b'Genuinelntel' [121 12 nan nan nan nan nan nan 1529097196694878 18]
MetaData:0:0:0:CWD  b'/home/khuck/src/Example-Heat_Transfer/test_sos' [0 0 nan nan 216484 nan nan nan nan 1529097196694891 19]
MetaData:0:0:0:Cache Size b'4096 KB' [1 3 0 nan nan 1 16396 nan nan nan nan 1529097196694972 20]

MetaData:0:0:0:Command Line  b'../stage_write/stage_write heat.bp staged. [10 0 nan nan 3 0 nan nan nan nan 1529097196695028 21]
MetaData:0:0:0:Executable - - [1 3 0 nan nan 2 16396 nan nan nan nan 1529097196695040 22]

- i - et [1 3 0 nan nan 3 0 nan nan nan nan 1529097196695157 23]
;’:;E:g:;’_%sﬂ' C‘OSE’tn‘aaTn’Lh H;ak:glm"mﬂsmge—w"wsmge—”"'te [1 1 0 nan nan 0 91804 nan nan nan nan 1529097196695262 24]

Py ) an A [12 0 nan nan 0 91804 nan nan nan nan 1529097196695389 25]
MetaData:0:0:0:Local Time  b2018-06-15T14:13:17-07:00 [1 1 0 nan nan 1 16508 nan nan nan nan 1529097196695411 26]

MetaData:0:0:0:Memory Size  b'8172400 kB' [1 1 0 nan nan 2 16508 nan nan nan nan 1529097196695491 27]
MetaData:0:0:0:Node Name b'ktau'

MetaData:0:0:0:0S Machine b'x86_64'
MetaData:0:0:0:0S Name b'Linux’
MetaData:0:0:0:0S Release  b'4.4.0-127-generic' W h ere are th e
MetaData:0:0:0:08 Version b'#153-Ubuntu SMP Sat May 19 10:58:46 UTC 2018’ .
MetaData:0:0:0:Starting Timestamp  b'1529097197678517" a n O m a I | e S ?
MetaData:0:0:0: TAU Architecture  b'default’

MetaData:0:0:0:TAU Config  b' -iowrapper -pdt=/home/khuck/install/pdtoolkit-3.25
-papi=/usr/local/papi/5.5.0 -sos=/home/khuck/install/sos_flow -mpi

>>> Indices of anomalies in terms of entry: [348, 450, 691, 1086,
1343, 1605, 1867, 1974, 2397, 2777]



Provenance database

Trace metadata Program_name
Trace anomaly id (Component)
Node < name (and path)
Thread executable
1 HW
Local Time
Run
Hostname
Run id
Start-time :
T Application
Trace metadata
1 N
| "iféace anomaly Timer
Trace metadata A Timer id
C : Function-Name
ounter
Counter id

Counter value
Counter unit
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Querying provenance

What are the anomalies for this run?

For a given anomaly in a run, what is:
 the workflow component?
* the node, thread, function call?
 the time elapsed since start of simulation?

What are the trace data for this node/component/function
before the anomaly?
« we save all trace data in memory preceding the detected anomaly

 the window is constrained by the total amount of memory
* in the system
« at each node

DDDDDDDDDDDD
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Conclusion

The extraction of provenance and performance metrics
at a detailed level for a simulation run

The use of provenance for code optimization and
debugging

The provenance system complements visualization of
the performance trace
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|. Foster, et al., Com?uting just what you need: Online data analysis and reduction at extreme
scales, Europar 201
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Anomaly Detection Results on
LAMMPS Data

LOF (Offline)

- 1
2
5 0.8 e .
(&) .
g 06 .. ° . . A
- e - T e |+ Data set: LAMMPS data subset
8F 04 o e __+| < Datasize: 1280 2D data points
TEu Ry Lo e o=« Event: function:
i 0.2 Y = i A-— voidLAMMPS_NS::Run::command(int,char**
< 0 = J— A — — ):vOidLAMMPS_NS::Verlet::run(int):MPI_Wai
0 0.2 0.4 0.6 0.8 1 t()
_ _ » Parameters
MiLOF (Online) « Anomalies rate: 1%
o 1 * No. of nearest neighbors: 4
£ 0.8 * Memory limit size: 128
T o S - Summarization size: 64
-% 0.6 .. - e « Window size: 1280
Soa s, T Rt i o
x - o swe ome woe o wlp woo A
w il : = e Sl . —
- 0.2 T— —_— — — . —
q’ ow e e oomoe LI Y 1 L] ° e
2 0= - - — e
£ 0 0.2 04 0.6 0.8 1
0 Normalized Exit Time
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