
Prescriptive provenance for 
streaming analysis of 
workflows at scale
Line Pouchard, Li Tang, Huub Van Dam, Shinjae Yoo - CSI
Dingwen Tao - CMU
Kevin Huck - University of Oregon



Provenance in Computer Science is defined as the record of 
data lineage and software processes operating on this data 
that enable interpreting, validating and reproducing results.  
In experimental science, provenance also includes 
experimental conditions, calibrations, notebooks, etc. 

Definition of provenance



Uses of Provenance in HPC
• Performance Investigation and optimization

• Where are the performance anomalies coming from?
• Which workflow component, node, function?

• Can I quickly find the environmental conditions where anomalies are 
detected?

• Has a similar error been encountered before?
• In previous runs?

• Have the HW and SW stack on this system changed since my last 
run?  

• Reproducibility 
• What version of the application/workflow did this run use?
• Which libraries did I use previously?
• What configuration switches did I use?
• What results do I obtain if I run the same workflow again?

• What happens to performance if I run the same configuration on another 
system?

• Where are the trade-offs between accuracy and performance?
• Can I establish thresholds of reproducibility?



What is a workflow?
Interdependencies between 
parallel components at 
runtime

Performance of each 
individual component can 
affect overall performance of 
a workflow

Performance metrics are 
measurements from workflow 
and system resources

n1 n2 nn

Courtesy: Kleese van Dam, K., et al., Enabling Structured Exploration of Workflow Performance Variability in 
Extreme-Scale Environments, Proc. 8th Workshop in Many-Task Computing on Clouds, Grids, and 
Supercomputers (MTAGS) collocated with SC 2015.



Basic example and mini-app: the heat 
transfer equation



Use Case: NWChem MD
• MD simulates 

• Conformational changes of 
biomolecules

• Transport processes
• Try to find statistics and key 

points
• Processes involve

• Many atoms (~1 million)
• Long time scales (µs)
• Many time steps (~1 billion)

• Shown
• Transmembrane Calcium 

channel
• Regulated by pH
• Plays a role in plant draught 

response

pH 8

pH 6



Challenges

• Volume of performance data is too large                   for 
manual inspection

• Provenance is very verbose, hard to extract and 
understand

• Memory is limited – not all data points can be saved
• Streaming methods for anomaly detection are needed

Prescriptive Provenance
Events (anomalies) and a time series rolling window of 
preceding events are extracted and stored 
The provenance of these events selected for retention by 
the anomaly detection and retained for a time window 
preceding the occurrence of the events



ADIOS

Data streaming/ workflow execution

TAU and 
SOSFlow

Online 
anomaly 
detection

Provenance 
Database

Workflow
Compone
nt 1

Workflow
Compone
nt 2

Chimbuko

Chimbuko overview architecture

• Chimbuko monitors workflow 
execution, extracts provenance and 
visualize data

• ADIOS orchestrates workflows (blue 
line) and provides data streaming 

• TAU provides performance metrics 
for instrumented components 1 & 2

• TAU extracts provenance metadata 
and trace data (green lines)

• SOSFlow stores and aggregates the 
data at each node

• Trace data is dynamically analyzed 
to detect anomalies (solid red line)

• Selected metadata and trace data is 
stored (e.g., time window for which 
trace event is interesting) (dashed 
red lines)



The Adaptable IO System (ADIOS)

• Provides portable, fast, 
scalable, easy-to-use, 
metadata rich output

• Key feature: I/O abstraction
• Optimized high-

performance write and 
read

• Data transformation: 
indexing and compression

• Data connection via 
staging, WAN, etc. 

Courtesy of Jong Choi, Workflow Case Studies, EPSi Data Processing and Experimental Data Processing Workflows



TAU performance system

• TAU Performance 
System® measures 
instrumented application 
regions, library calls

• OpenMP regions, MPI 
functions, I/O libraries 
(POSIX, ADIOS)

• Time and hardware 
counters of interest 
(cache misses, FLOPs)

• Metadata from the 
execution

Compute Nodes

Application

TAU
SOS 
client

Application

TAU
SOS 
client

Application

TAU
SOS 
client

Application

TAU
SOS 
client



SOSFlow aggregation

• SOS client plugins, 
listeners and 
aggregators 
periodically aggregate 
performance data from 
all applications

• Maintains cache of N
most recent frames of 
data

• Optional storage to 
key/value store 
database

Compute Nodes

DB

Application

TAU

SOSd
listener

Aggregation
Node(s)

SOSd
aggregator

DB

SOS 
analysis

SOS 
client

Application

TAU SOS 
client

Application

TAU SOS 
client

Application

TAU SOS 
client



SOSFlow and Anomaly Detection

• SOS extraction client 
periodically reads trace 
data and exports it over 
ADIOS to be read by 
anomaly detection 
analysis

• If/when anomaly 
detected, a second 
extraction client is 
launched to export full 
window of trace data 
leading up to anomalous 
event

Aggregation
Node(s)

SOSd aggregator

DB

SOS 
extraction

client

ADIOS Anomaly
Detection

Analysis
& visualization

SOS 
extraction 

client

ADIOS



Prescriptive Provenance Window

• We keep all the (static) provenance metadata for 
each run

• We keep all the performance metrics for a window 
preceding the anomalies

• Prescriptive provenance is the provenance of 
events selected for retention by anomaly 
detection

• Anomaly detection prescribes the events to be stored.



Offline Anomaly Detection: Local 
Outlier Factor (LOF)

• Reachability distance from o’ to o:

• where k is a user-specified parameter

• Local reachability density of o:

14

• LOF (Local outlier factor) of an object o is the average of the ratio of local 
reachability of o and those of o’s k-nearest neighbors

• The lower the local reachability density of o, and the higher the local 
reachability density of the kNN of o, the higher LOF

• This captures a local outlier whose local density is relatively low comparing to 
the local densities of its kNN

distk(o): the distance between data point o 
and its kth nearest neighbor (kth-NN)

Nk(o): the set of k nearest neighbors of 
data point o

k

Higher LOF 
value è
Higher 
probability to be 
outlier



• LOF: Requires the entire data set to compute 
LOF values

• iLOF: Can compute the outlier factor for each 
incoming data point (can be used for data 
streams)

• For each incoming data point p, perform an 
iLOF insertion:

• Find p’s k-nearest neighbors (k-NNs)
• Compute LOF of p based on the outlier 

factors of its k-NNs
• Update the k-NNs of past data points along 

with their LOFs (if needed)

Online Anomaly Detection: 
Incremental Local Outlier Factor 
(iLOF)

However, iLOF still suffers from large memory requirements, since all past data points need to be retained 
to compute the outlier factor for each new incoming data point (for high accurate of outlier factor value)



1. Summarization
• After incoming points reaches memory limit

• Build a summary over the past data points (i.e., k-distance, lrd, LOF) based on K-
means

• Delete these data points from the memory

• Not necessarily to find clusters exactly, but aims to find similar data points to 
represent average of original data points

2. Merging
• After summarization, new generated cluster centers will be merged with existing 

cluster centers by using weighted clustering algorithm
• Weights are based on their numbers of points before summarization

3. Updating
• Update k-distance, lrd, LOF based on merged clusters

Online Anomaly Detection: Limited
Memory incremental LOF (MiLOF)

MILOF: Fast Memory Efficient Local Outlier Detection in Data Streams, Mahsa Salehi, Christopher Leckie, James C. 
Bezdek, Tharshan Vaithianathan, and Xuyun Zhang. IEEE Transactions on Knowledge and Data Engineering, 28:12, 2016



Data reduction with provenance

• Data set: LAMMPS data subset

• Event: function: 

voidLAMMPS_NS::Run::command(int,char

**):voidLAMMPS_NS::Verlet::run(int):MPI_

Wait()

• Parameters

• Anomalies rate: 1%

• No. of nearest neighbors: 4

• Memory limit size: 128

• Summarization size: 64



Extracted Provenance
What does it mean?
What do we keep?

Where are the 
anomalies?



Provenance database



Querying provenance

What are the anomalies for this run?
For a given anomaly in a run, what is:

• the workflow component? 
• the node, thread, function call? 
• the time elapsed since start of simulation?

What are the trace data for this node/component/function 
before the anomaly?

• we save all trace data in memory preceding the detected anomaly
• the window is constrained by the total amount of memory

• in the system
• at each node



Conclusion
The extraction of provenance and performance metrics 
at a detailed level for a simulation run
The use of provenance for code optimization and 
debugging
The provenance system complements visualization of 
the performance trace

Publications

L. Pouchard, A. Malik, H. Van Dam, K. Kleese, C. Xie, and W. Xu, Capturing provenance as a 
diagnostic tool for workflow performance evaluation and optimization, NYSDS 2017
I. Foster, et al., Computing just what you need: Online data analysis and reduction at extreme 
scales, Europar 2017
L. Pouchard, S. Baldwin, T. Elsethaggen, C. Gamboa, S. Jha, B. Raju, E. Stephan, L. Tang, and 
K. Van Dam, Computational reproducibility for scientific workflows in large-scale environments, 
SC 2017 (presentation) and IJHPCA (submitted)



Acknowledgements

This research was supported by the Exascale Computing Project (ECP), a 
collaborative effort of two DOE organizations – the Office of Science and the 
National Nuclear Security Administration.  The Project Number for the Co-
design center for Online Data Analysis and Reduction (CODAR) that 
supported this research is 17-SC-20-SC. 

We acknowledge the participation of Mohammed Endris, Behiru Shita, and Dr. 
Mulugeta Dubda, Morgan State University and NSF Summer Program. 



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

LOF (Offline)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

Normalized Exit Time

MiLOF (Online)

• Data set: LAMMPS data subset
• Data size: 1280 2D data points
• Event: function: 

voidLAMMPS_NS::Run::command(int,char**
):voidLAMMPS_NS::Verlet::run(int):MPI_Wai
t()

• Parameters
• Anomalies rate: 1%
• No. of nearest neighbors: 4

• Memory limit size: 128
• Summarization size: 64
• Window size: 1280

Anomaly Detection Results on 
LAMMPS Data


