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Transfer Learning Basics

@ Traditional machine learning vs. transfer learning
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Transfer Learning Basics
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Transfer Learning

@ Suppose we want to do a supervised learning but there is lack of
labeled data in the domain of interest (target domain).

@ Therefore, the classifier cannot be trained well and error rate

would be high.

@ At the same time, suppose we have plenty of labeled data in a
different but relevant domain (source domain).

@ The problem of transfer learning is to answer when and how to
employ those source data in order to design a more accurate

classifier in the target domain.
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Domain Adaptation

@ Distributions of source and target data are different (not i.i.d. as in
traditional machine learning).

@ Domain adaptation [1] aims to find a common domain where both
source and target data can be transformed to have similar
distributions.

@ Often, transformation is forced to source and target data but no
theoretical guarantee that the prediction performance in the target
domain will be enhanced.

@ There is no rigorous reasoning for “transferability” and it does not
answer if the two domains are actually relevant.

@ More critically, is there a way to optimally transfer the relevant
knowledge and data from source to target?
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Optimal Bayesian Classifier

Feature-label distribution: p(x, 1|10) = p(x|/; 8)p(/|0)

Prior distribution: p(8)

Likelihood: p(D|0) =[], p(x",1"|6)

Posterior: p(f|D) = 2O

Posterior predictive (effective class-conditional) distribution given
a new feature vector x*: p(x*|/; D) « [ dop(x*|I;0)p(6|D)
Optimal Bayesian classifier:

0//D)p(x*|I; D
arg/e?gjaﬁ}p( IID)p(x*|I; D)
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Bayesian Transfer Learning

@ We formulate a Bayesian transfer learning framework to transfer
source domain knowledge and data for learning in target domain.

@ Our Bayesian framework directly models the feature-label
distributions in source and target domains.

@ The “transferability” across domains can be characterized by a
joint prior distribution on model parameters of feature-label
distributions across domains.

@ The relevance of source and target problems can be studied
through the joint posterior distribution of model parameters.

@ Under such a Bayesian framework, we show how to optimally

transfer abundant source data to the target domain and define the
Optimal Bayesian Transfer Learning (OBTL) classifier.
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Multivariate Gaussian Data
@ Distributions of data in source and target domains:
X N (ks (N) )y N (i (A)TT) L e {1 L,
@ Joint prior for the parameters of the two domains:
P (1, 11t No, A) = P (16lAS) P (1l P (N6 ), 1€ {1, L},
WAL~ N (il (AL 1) i~ (i (et )

________________________________________

A N4 AY
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@ m m (] @ @ @
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@ In the case of one domain, Wishart matrices are used for a conjugate
prior for the distribution of precision matrices.

@ The main question here is: how to define a joint distribution between two
Wishart matrices p(A}, AL)?
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Theorem ([2])

IfA ~ Wy(M,v), and A is an r x d matrix of rank r, where r < d, then
AANA" ~ W,(AMA’, v).

Corollary

A1 Ai2

A ~ Wy(M,v) and A = () 1"
12

. . . M;; M
submatrices, respectively, and if M = (M31 M:
12

of M with My and My, being two d; x di and db x db submatrices,
respectively, then Nq ~ Wd1 (M11 5 V) and Noo ~ Wdz(Mgg7 I/).

), where N1 and/\22 are d1 X d1 anddz X d2

) is the corresponding partition
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Theorem ([3])

Let\ = (A” A”) be a (di + db) x (dy + db) partitioned Wishart random

matrix, where the diagonal partitions are of sizes d; x dy and db x @b,
respectively. The Wishart distribution of N has v > d; + d> degrees of

freedom and positive-definite scale matrix M = (mﬁ m: ) partitioned in the
12
same way as N\. The joint distribution of the two diagonal partitions Ny1 and
N2 have the density function given by
1 -1 / 1 |
p(/\11,/\22) = Ketr 75 (M11 +F CZF) A1 | etr 7§C2 Noo

(1)
v—dy—1 v—dy —1 v 1
X M1l 2 A2l 2 oF <; G) ;

2 4

© g1 —e-TM M- G AZ N
where C2 = M22 — M12M11 M12, F= C2 |V|.|2|V|.|1 p G= /\22F/\11F /\22,

K1 = 252 Fa, (%) T (%) IM|2, and oF; is the generalized matrix-variate
hypergeometric function.

Multivariate gamma function given by g(a) = =" 12,7 (a— 5.
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Hypergeometric functions of matrix arguments

Definition ([4])

The generalized hypergeometric function of one matrix argument is defined by

(31)n o (ap)rc CK«(X)
Fq(ay, -+ ,apiby, -+, bg: X) = —_—— ) (2
prqlar, ip; 1 q
% oo
where a;,i=1,.-- ,p,and b, j=1,- -, q, are arbitrary complex (real in our case) numbers, Cy; (X) is the zonal polynomial
of d x d symmetric matrix X corresponding to the ordered partition = = (ky, - - - , kg), k{ > --- > kg > 0, ky + - - - kg = k
and )., x denotes summation over all partitions « of k. The generalized hypergeometric coefficient (a), is defined by
(@ -1 ( - ) @®)
)k = a— s
=1 2 Jk
where (a)r = a(@+1)---(a+r—1),r=1,2,. .., with (a)p = 1.
.
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Hypergeometric functions of matrix arguments

Most special cases are:

c X> o (X))
oFo(X) = Z S = Z g = e,
k=0 rt-k k=l )
) C (X) —a
1Fo(aX) = ZZ =lm = X775, [IX]| <1,
k=0 kt-k
Fi(b; X) = Z Z Cr(X) (Confluent hypergeometric limit function) (4)
o o (DKt
rEk
(@)r Cn (X) . . .
1Fi(a; b; X) ,  (Confluent hypergeometric function of the first kind)
ic0 ik (B)w

b
oFi(a, b;c; X) = E g 7 )( ) ';((l ), [I1X|]] < 1, (Gauss hypergeometric function)
k=0 kk :
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Hypergeometric functions of matrix arguments

Theorem ([2])

LetZ be a complex symmetric matrix whose real part is positive-definite, and let X be an arbitrary complex symmetric matrix.
Then

/R e ZRIRI7 5 G (AX)IR = Tg(a)()x 217 C (X2, ®)
>

the integration being over the space of positive-definite d x d matrices, and valid for all complex numbers « satisfying
Re(a) > %. I g() is the multivariate gamma function defined in (??).

v
Theorem ([5])
IfZ > 0 andRe(cr) > 951, and X is ad x d symmetric matrix, we have
o 041
o ex-ZRIRI®™Z pFo(ar. - apiby, -+ . bgi RX)OR
R>0
a— 931 . r1/2ypl/2
= etr((—ZR)|R| 2 pFg(ay, - ,apiby, -+ ,bg;R/"“XR'/“)dR
R>0
=Tg(e)Z| ™% py1Fg(ar, - -+ ,ap, a;by, - - - ,bg: Xz ).
v
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Joint prior for two precision matrices

@ We define the following joint prior for the precision matrices of the source
and target domains:

PN}, L) = Kletr (; ()~ +F CF) "1)

e (—;(c’) >|/\| N R ( a/)

i i
where M/ = (I\:'," :";) is an 2d x 2d positive definite scale matrix, and
ts

s

(6)

v > 2d is degrees of freedom. C' = M} — Mﬁs/ (M’) '™,

_ / _ 1 )
F' = (C) "My, (M) ", G = ALFINFI ALY, (K1) =23 ()

@ The marginal distributions are Wishart for each domain (we are
interested in understanding how source data may help better learn the
marginal distribution in target domain):

AL~ WML N, Te{1,--- L}, ze{st}. (7)
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Posteriors

@ Joint likelihood of source and target:

p(Dt, Ds|pats ps, Aty As) = P(Dil e, A)P(Ds| s, As)

1 Ly 1 L a1 L
_p(DIa"‘ s Dl s Ny 5 Af)
Ly 1 L A1 L
X p(DY, - DSlpd, o ub AL AL ®)
L

L
H p(Dyl1ey, A [T P(Dsl s, AL)-

I=1 I=1
@ Joint posterior of source and target:

p(uts s, At, As| Dt, Ds)
o p(Dt, Ds|ut, ps, /\17 As)p(pt, ps, /\t,/\s)
L
1Al
o [T p(D}lus, r)HP’D Iusy/\s)Hp byl AL AL ©)
1=1 1=1 1=1

L
o [T P(DYligs ADP(Dyl g AP (41N ) P (mtIAL) p (A )
1=1
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Posteriors of Target Parameters

@ Posterior of target given both the source and target data:
p(ut, At Dy, Ds) :/ P(uts s, Aty As| Dy, Ds)dpsdAs
nsihs
L
1‘[/ | Pt s N 1, D ong
H p(ups 1Y, DY),
1=1

where D
P(ut: A| Dy, Dg)
I Al Al ! / ! !
= [, Pt b A AL D D)duban,
HgiNg (10)
Iy oAl Iial
o< p(Dyl s, AP (HrV\y)

Ty bl Iyal Al i !
x [ POk AP (EIAG) p (N A7) diakelnt.
Mg
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Posteriors of Target Parameters

Lemma

IfD = {xq,--- ,Xp} wherex; isad x 1 vectorandx; ~ N (u, (/\)*1), fori=1,--- ,n,and (u, \) has a Normal-Wishart

prior, such that, u|A ~ N (m, (n/\)_1) and A ~ Wy(M, v), then the posterior of (i, A) upon observing D is also a
Normal-Wishart distribution:

1A, D ~ N (mp, (kaA) "),

(11)
A|D ~ Wy(Mn, vn),

where _
KM + nx
Kp=K+N, vp=v+n mMp=—

ﬁ+n/ (12)

—1 wn - -
My L (m - 2)(m - %),

depending on the sample mean and covariance matrix

1

n n /
= Z = (x - %)% — %) . (13)
=1 i=1

n
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Posteriors of Target Parameters

@ Using the previous lemma and theorems, we can find the closed-form
posterior distribution of mean and precision matrix of the target domain,
which is a function of matrix-variate Confluent hypergeometric function

of first kind:

1Al ! !
P(ut NI Dy, Dg) =

Ao (242 (04 m) 04

(14)

@ We see that as opposed to one-domain posterior which is
Normal-Wishart, here the posterior is Normal-Hypergeometric.
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where
!

d /
(A/)—1 _ 2777 2 2d("2+nt) ry (l/l"’n‘)

T
Kin 2
vl n) R B
/ Ti vi+ng vi+n v
X |Ty 2F ) P
2 2 2
and I I I I
Kin = K¢+ N, Kg,p = Kg + Ny,
R R SR,
Min=—TJ g 0 Men= " T
’ wh + ] ’ wh 4+ nl
I
—1 —1 ! Kin
(T) " = () +F cF s
Kt +nt

T -1 _ c —1 s/ ﬂls"’s I ol ol
(5) _( ) * S+,€/s+n/s(ms*xs)(ms*xs)1

depending on the corresponding sample mean vectors and sample covariance matrices as follows:
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Effective Class-Conditional Densities

@ The effective class-conditional densities (thereafter posterior predictive):

pxin = [ g PO A" i KO

OoprL(X|/) = P(X\/) =

’+n +1

X‘TI‘

Wl
X ‘T” 2 5

(u +n,+1> - (u +n§>
2

+nf v nl 41
<" v r V2 T/FT/F/>

I
n n
v+ ,V+’VT’FT’F’
2 2 2

where ; ,
“:(:“lt,n+1 =K+ N +1,
Il
I ntynm,Yner
x Kt,n+ 1
/
N=1 (! Ktn | | !
()7 = () 5 (ko =) (ko)
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Optimal Bayesian Transfer Learning (OBTL) Classifier

@ Let cf be the prior probability that the target sample x belongs to the class / € {1,--- ,L}. Since 0 < c{ < 1and
2}21 c{ = 1, a Dirichlet prior is assumed for the c[:

(¢}, cf) ~ Dir(L, &), @1

where £; = (5}, ce ,g,L) are the concentration parameters, where E{ > Oforall/ e {1,---,L}.

@ The posterior of ¢;’s is also another Dirichlet distribution:

x* = (¢, ,ckIn) ~ Dir(L, & + n) 2
=Dir(L, & +nl, - €k +nb),
with the posterior mean of c; as
/ /
| EP + ny
E.«(c)) = ) (23)
g t Ny + ‘5?

where Ny = Sk, nfand €9 = S5, el

@ The optimal Bayesian transfer learning (OBTL) classifier for any new unlabeled sample x in the target domain is defined
as:

OBTL

Vowri(x) = arg_ max | Erx (cf)Oomm(xI1)- (24)
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OBC in Target Domain

@ The effective class-conditional densities p(x|/) = Oopc(X|/) for OBC are derived as:

d 1yl
I 2 / | v +n v+t vitny
OQBC(XH):W7% Ktn r v+ + 1 - v +nt ) /| |MI |— H
n; nt 1 2 d t:n

, (29
where ,
N1 _ (! ! “t,n / / 4
(M)~ = (mi,) "+ T e =m0 (26)
Im! & nlg!
| | KMy + MXp
Ktn =Kt TN vipg=v +0, M= —F——,
rp N
(27)
(M’ )—1 (M’)_ s/ rinp (m! — &ly(m! -/)’
= +S; + m; — X)(m; — X;) ,
t,n t t K; n n; t )My t
/ i Mod oY (gl
with the corresponding sample mean and covariance: x, 2 1 Xt Sp= Ei:’1 (xt i xt) (x, i xt)
@ The OBC is defined as: Wopc(X) = argmaxje 1 ... 1y Exx (c,)OOBc(x\I).
Theorem
IfMlg = 0 foralll € {1,--- L}, then
VopTL(X) = VoBc(X), (28)

meaning that if there is no interaction between the source and target domains in all the classes a priori, then the OBTL classifier

turns to the OBC classifier in the target domain.
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Laplace Approximation of Gauss Hypergeometric

@ The Gauss hypergeomeric function has the following integral representation:

2Fi(a,bie;X) = By (a,c - a)

d+1 _g— gl (29)
T g = YT g — x| P,
0g<Y<ly
which is valid under the following conditions: X € C9% 9 is symmetric and satisfies Re(X) < Iy, Re(a) > %, and
Re(c — a) > %. Bgy(cx, B) is the multivariate beta function
Ta(a)la(B)
Byla, §) = 2NaB), (30)
Fa(a + B)
@ The Laplace approximation is one common solution to approximate the integral
1= [ ny)exe(-xg)ay. ()
yeDb

where D C R is an open set and X is a real parameter. If g(\) has a unique minimum over D at point y € D, then the
Laplace approximation to / is given by

2819 ()1 2 h) exp(~2g(9), @2)

2
where g’ (y) = %(;7)— is the Hessian of g(y).
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@ The calibrated Laplace approximation of Gauss hypergeometic functions of matrix argument:

oFi(a,bicX) gy dd+1) H*%

Fia,beX)y= 1" ""0 _ % 7
2hl )= E(aboo) 2,1
d 7\ (1 —p\°2 . (33)
1 1 P—
XH{(7> ( ) (1_lel) }7
=1 a c—a
where
gy =0 =) b — (1 — )
Ry = — + - ~ ~ , (34)
i1 i a c—a (1 = x7)(1 — x;¥;)a(c — a)
where J; is defined as
N 2a
Vi= —— ©9
72 —dax(c—b) — T
where 7 = x;(b — a) — cand X = diag{xq, - , Xg}.
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Experiment results: synthetic data

ng =200, =25 n=10,v=25
0.35
—OBC, target-only 0.26 —OBC, target only
_ OBTL, 2 =05 o OBTL, a =05
S 03 —OBTL, a =0.7 e —OBTL, a =0.7
'-'é' —OBTL, « = 0.9 '-'é' 024 —OBTL, @ =0.9
) k]
© ©
£0.25 L0202
173 [
[%] [%]
k) Kol
o O
2 02 e 0.2
o o
g g
< < 0.18
0.15
0.16
10 20 30 40 50 50 100 150 200 250 300 350 400
n n
t s
(a) (b)

Figure: (a) Average classification error versus the number of target training data per class, n;. The dimension is d = 10,
number of source training data per class is ns = 200, and there are L = 2 classes in each domain, (b) Average classification
error versus the number of source training data per class, ns. The dimension is d = 10, number of target training data per class

is ny = 10, and there are L = 2 classes in each domain.
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Experiment results: benchmark image datasets

@ Office and Caltech dataset

@ Labeled images from four domains: Amazon website, DSLR
camera, Webcam, and Caltech dataset

@ Labels are office stuff like laptop, backpack, calculator, ...

B NEE ' &
ljlﬁ i B

Amazon DSLR Webcam Caltech

A @J@‘Oﬁﬂ‘ -
MEER 65l

Laptop Backp ck Headphone Calculator
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Experiment results: benchmark image datasets

Table: Accuracy for different source and target domains in Office+Clatech256 dataset. Domain names are denoted as a:

amazon, w: webcam, d: dslr, c: Caltech256. Red shows the best accuracy and blue shows the second best accuracy in each

column. The results of the first six methods has been adopted from [1]. Similar to [1], we also used the simulation setup of [6] for

the OBTLs results.

[a = w[a — d[a — ¢c[w — a]w — d[w — c[d — a]d — w[d — c[c — a[c — w[c — d[[Mean]

1-NN-t 345 [ 336 | 19.7 ]| 295 | 359 | 189 | 27.1 | 334 | 18.6 | 29.2 | 33.5 | 34.1 |[ 29.0
SVM-t 63.7 [ 57.2 | 322 | 46.0 | 56.5 | 29.7 | 45.3 | 62.1 | 32.0 | 45.1 | 60.2 | 56.3 |[ 48.9
HFA [7] 57.4 | 551 | 31.0 | 56.5 | 56.5 | 29.0 | 42.9 | 60.5 | 30.9 | 43.8 | 58.1 | 55.6 || 48.1
MMDT[6] | 64.6 |56.7 | 36.4 | 47.7 | 67.0 | 32.2 | 469 | 741 [ 34.1 | 49.4 | 63.8 | 56.5 || 52.5
CDLS [8] 68.7 | 60.4 [ 35.3 | 51.8 | 60.7 | 33.5 | 50.7 | 68.5 | 34.9 [ 50.9 | 66.3 | 59.8 || 53.5
ILS (1-NN) [1]| 59.7 | 49.8 | 43.6 | 54.3 | 70.8 | 38.6 | 55.0 | 80.1 | 41.0 | 55.1 | 62.9 | 56.2 || 55.6
OBTL 721 | 605 | 424 | 54.7 | 76.5 | 37.7 | 53.9 | 84.8 | 40.2 | 54.8 | 70.6 | 61.2 || 59.1
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OBTL for Count Data

@ We use the Negative Binomial model for the feature-label distribution in
each domain:

z:] NB(:u'z/a z:)a (36)
with the probability mass function (PMF)
P(xlz,i,j = klf‘lz,i’ é,i) =
et (g N A\ @
r(rl Jrik+1) (;LZ,H ) (;LZ,H ) '

where z € {s, t} denotes the source, s, or target, t, domains; pz ;and r ; are respectively the mean and shape of the
gene i in domain z and class /. The shape parameter is the inverse of the dlspersion parameter in Negative Binomial
model, which controls the amount of variance. The mean and variance of xZ ijare

! !
E(xz,i,j) = Hz >
! 2
I I “z,i) (38)
Var(xz,i,j) =pz;+ T

z,i
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Priors and Posteriors

@ Let w= H and r = denote respectively all the mean and shape parameters of the d
{st} {1:d} {st} {1:d}
genes in L classes and two domains s and t. The prior is factorized as

P, 1) = HHP("’LSNI"‘YI)p(/l 1/1) (39)

1=1 =1

@ No closed-form posteriors in this model.

@ Hamiltonian Monte Carlo (HMC) method is used for posterior sampling, which outperforms other MCMC methods in that
it eliminates all the tuning steps.

Target Domain Source Domain
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Joint Prior

Lemma

A ~ Wo(M,v), A = ( NN ) andM = (m” 2 ) then \jj ~ mjx2 fori = 1,2, where x2 denotes the Chi-squared

X2 Ao e R
distribution with v degrees of freedom. As a result, the their mean and variance are E(\;) = vmj; and Var(\j;) = 2um§ for
i =1, 2. The covariance and correlation between X\1{ and \oo are respectively

2 mly
Cov(A11, Ag2) = 2vmip, px = . (40)
MmyqMg2
v
Theorem ([3])
LetA = ( ;112 ;122 ) be a2 x 2 Wishart random matrix with v > 2 degrees of freedom and positive-definite scale matrix
M= ( 'mng r,;';g ) . The joint distribution of the two diagonal entries A11 and \p have the density function given by
1/ 4 2 1 1
P(A1, Az2) = K exp ( —— ("’11 + cof ) A1 )exp (=0 Az
2 2
(41)
v _q v _q v 1
X (AM1)2 (A22)2  oFy (*1 *9) )
2 4
where ¢ = Moy — m?zmrﬂ, i= cz’1m12m1’11,g = f2>\11>\22, k=1 =2vr? (%) M| %, and o Fy is the generalized
hypergeometric function.
V.
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Joint Prior

k
Here oFy(b;x) = >R, m is called confluent hypergeometric limit function, which is closely related to the Bessel functions:

3 1o
o) = oy oF (QH’ e ) “2

Now, we can define the joint priors of both mean and shape parameters in terms of correlations between two domains:

1 ! v v
[ Hs,i _ Pt,i B i O S
Pluss,io p) = Ky exp (72m’ (1=l )) s ( 2ml (1 —p! ,-)) (”‘s,i) (”l,i)

W,
I (43)
vy Pui I
o\ G e |
aml (1=, ;)
p(rl o) = K exp 71’;’[ exp 74” (,’ )%’1 (,/ )%*1
s,iv "t = D T odl | ] Il s,i t,i
2s5 (1 =p ;) 2s; (1 =pp )
(44)
I
vr Pri I
X oFy 2T T . et
4555t (1 - pr,i)
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Effective Class-Conditional Densities

@ Effective class-conditional density for any new test data in target domain is defined as:
_ I NN B N |
p(x|l) = | P(X| e r)m™ (g, rp)dpss Oy (45)
Bty

for/ € {1,---, L}, where =*(u}, r}) = p(u}, r}| D}, DL) is the posterior of (.}, r/) upon observation of D} and DL.

@ There is no closed form solution for the effective densities. Posterior samples from HMC sampling are used to
approximate these effective densities. Suppose we have N posterior samples from all of d genes in L classes. Then the
approximation is given by:

1TX e o
p(x|) = ZHP(Xi|ﬁ1,,’,,’xQ,,‘J) (46)

/:1 i=1

where ﬁg,i,j and FPIJJ are the j — th posterior sample of gene i in class / of target domain for the mean and shape
parameters, respectively.

@ The OBTL is given by:

OBTL

Vowrt (x) = arg,_ max | Erx (cpp(x|).- (47)

Xiaoning Qian OBTL August 7, 2018 33/39



ic data

synthet

Experiment results

o
8 S
g
) <
)
-
8 "
-
10118 uoyROSSE(D SBEIAAY 10113 UOYEOYISSEID BRI
@ 8
3
W o
g S
s 8 "
_, N
= =
: w
i 8 .
K <
10113 UOYEO) 10118 uopeOySSElD SBEIAAY

¢
g
¢

Xiaoning Qian



Experiment results: RNA-seq data

We classify two kinds of lung cancer: LUAD and LUSC
Data are extracted from The Cancer Genome Atlas (TCGA)

Two RNA-seq measurements: RNA-seq and RNA-seq-v2. These have different distributions for each genes, so assume
two domains:

Target domain: RNA-seq. LUAD: 125 tumor samples. LUSC: 223 tumor samples
Source domain: RNA-seqg-v2. LUAD: 515 tumor samples. LUSC: 501 tumor samples

Experiment setup: we randomly generate 50 splits of training (from source and target) and test (only from target) data.
We assume n’S = 100 and n{ = 5 and number of test data per target class is 100 in each split.

The average classification error is given for different values of correlations of mean and shape parameters between
source and target domains.

The average error of the OBC is also given for the sake of comparisons.

Two different sets of features of size d = 10 are picked.
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Experiment results: RNA-seq data

Case 1:

OBC error = 0.1453

OBTL error:

[ [[ pr=05T71 pr=0771 pr=09 [ pr=0.99 |

pu =05 0.1187 0.1184 0.1153 0.1136
pp =07 0.1193 0.1175 0.1149 0.1139
pp =09 0.1162 0.1141 0.1130 0.1122
pu = 0.99 0.1167 0.1127 0.1107 0.1111

Case 2:

OBC error = 0.1936

OBTL error:

[ [[ pr=05T71 pr=0771 pr=09 [ pr=0.99 |

pu =0.5 0.1654 0.1640 0.1588 0.1543
pu =07 0.1678 0.1628 0.1571 0.1540
pu =0.9 0.1646 0.1619 0.1569 0.1531
pu = 0.99 0.1631 0.1607 0.1561 0.1513
o = = = =
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Conclusions [9]

@ We formulate a Bayesian transfer learning framework to transfer
source domain knowledge and data for learning in target domain.

@ Our Bayesian framework directly models the feature-label
distributions in source and target domains.

@ The “transferability” across domains can be characterized by a
joint prior distribution on model parameters of feature-label
distributions across domains.

@ We derive the Optimal Bayesian Transfer Learning (OBTL)
classifier for both continuous and count data with efficient
computational solutions.
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Future Research

@ Such a Bayesian transfer learning framework enables the
closed-loop learning to design experiments for “smart” data and
scientific knowledge acquisition.

~
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