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The Basic Idea

1. A and B are both ‘quantum
optimization machines.’

2. A can be simulated efficiently
using a classical computer.

3. B cannot be simulated efficiently
using a classical computer.

Is there a difference between the performance of A and B in
solving optimization problems?



Quantum Annealin g  Kadowaki & Nishimori, 98
Farhi et al.,‘00

. Encode a potentially hard optimization problem into parameters of a
disordered Ising Hamiltonian:  wes=i» Problem Hamiltonian

Hy, =Y Ji;ZiZj+ Y hiZ

1< 1

Lucas, ‘14

Traveling Salesman Problem

Goal: Find the shortest path.



Quantum Annealing Kadowaki & Nishimori, ‘98
Farhi et al.,‘00

. Encode a potentially hard optimization problem into parameters of a
disordered Ising Hamiltonian: wee=d» Problem Hamiltonian

Hy, =Y Ji;ZiZj+ Y hiZ

i< g i
Lucas, ‘|4

T

Traveling Salesman Problem Ji ’$j

Vo

Solution: The shortest path Groundstate configuration




Quantum Annealing Kadowaki & Nishimori, ‘98
Farhi et al.,‘00

2. Initialize the system into the groundstate of an ‘easy’ Hamiltonian,
traditionally a uniform transverse field: wwwsi» Initial/Driver Hamiltonian

Hy = » X

—>
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Quantum Anneallng Kadowaki & Nishimori, 98
Farhi et al.,"00

3. Evolve the the total Hamiltonian slowly into the groundstate of the
problem Hamiltonian: w===d» Annealing Schedule

= ) X; H,=Y Ji;ZiZ, +th

1<

—> —> '




Quantum Annealing Kadowaki & Nishimori, ‘98
Farhi et al.,‘00

4. Measure the final spin configuration. This will (hopefully) be an answer to
the optimization problem.

H() — ZXZ Hp = Z JZ]ZZZJ —+ thZz

1< 1

Jij ,$j

f
Vo

Solution: The shortest path Groundstate configuration




Sources of Error
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The smaller the gap, the higher are the chances of errors.



Stoquastic Hamiltonians and QMC

Bennet

Stoquastic ‘=’ stochastic + quantum! S
ravyi et al,’06

Stochastic sampling of the system’s configurations in the Quantum
Monte Carlo Algorithm can be done efficiently.

Stoquastic Hamiltonians: Real and non-positive off-diagonal matrix
elements In the computational basis.

This includes all bosonic systems, non-frustrated magnets and those
fermionic systems which do not suffer from “sign problem.” Loh etal, 50

Numerically, Quantum Monte Carlo and Quantum Annealing show
the same scaling for tunneling problems. Isakov et al, *I5

Denchev et al,‘l 6
Jiang et al,‘17

Conjecture:

If a problem is inefficient for QMC, then probably it is also
inefficient for QA with a stoquastic Hamiltonian.



Non-Stoquastic Hamiltonians

Non-Stoquastic Hamiltonians: those that suffer from the “sign

problem” 1.e. most fermionic systems, frustrated magnets, etc.

Bravyi et al,‘06
> Quantum Monte Carlo is inefficient. Troyer & Wiese, 04

Non-stoquastic Hamiltonians are more complex and cannot be
efficiently simulated with classical computers.
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Non-Stoquastic Hamiltonians

Non-Stoquastic Hamiltonians: those that suffer from the “sign

problem” 1.e. most fermionic systems, frustrated magnets, etc.

Bravyi et al,"06
> Quantum Monte Carlo is inefficient. Troyer & Wiese, 04

Non-stoquastic Hamiltonians are more complex and cannot be
efficiently simulated with classical computers.

Universal adiabatic quantum computing is possible for
non-stoquastic Hamiltonians. Aharonov et al,‘04

w=®» Can this additional complexity help solving hard
optimization problems in the context of quantum annealing?

Non-Stoquastic — 7 — a(s) Hz 1 B(s) Hp «— Stoquastic
Additional Terms but hard



The Ising Spin Glass as H;

Problem Hamiltonian: Similar to the Sherrington-Kirkpatrick
model of Ising spin glass

Hy, =Y JijZiZ;+ Y hiZ;
ERNEAN

Random from a Gaussian distribution Zero

Infinite-dimensional Fully connected graphs
* Worst cases are NP-hard Barahona, ‘82

Additional Terms:

1<

frustration =P groundstate  __ HO#ZXin
degeneracy py

Intrinsic non-stoquastic
Hamiltonian



Annealing Schedules

= (1= s)Ho = s(1 = ), +sH,
H, i ZXi '

Farhi et al, ‘02
Crosson et al,‘14
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Simulating Quantum Annealing

Instantaneous Energy Spectrum
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* Exact Diagonalization » Unitary Schroedinger Dynamics
(Simulates Annealing)



Metrics of Comparison

Instantaneous Energy Spectrum
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Success Probability Enhancement Metrics

* Success Probability Enhancement Ratio

number of instances
Le /With P* > PP VB +#a

L <— total number of instances

o
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» Success Probability Enhancement
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(P* > PP, VB +#a)



Distribution of Success Probability Enhancement

Renf ~ 69 %
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Distribution of Success Probability Enhancement

Stoquastic Coupled Hamiltonian:

* |mproves a large fraction of instances
* The actual improvement is small

Non-Stoquastic Coupled Hamiltonians:

* |mprove smaller fractions of instances
* The actual improvement can be huge

Which instances are affected by
each type of Hamiltonian!?



Affected Instances: P Distribution
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Distribution of Success Probability Enhancement

Stoquastic Coupled Hamiltonian:
* |mproves a large fraction of instances
* [he actual improvement is small
* Tends to improve on easier problems

Non-Stoquastic Coupled Hamiltonians:
* |Improve smaller fractions of instances

* [he actual iImprovement can be huge
* Mainly improves on harder problems

What is the relation to the minimum gap!



Affected Instances: Min Gap Distribution
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Relation to the Size of Minimum Gap

Stoquastic Coupled Hamiltonian:
* Affects instances with a large range of gaps
* The size of the gap almost always increases.

The Stoquastic Hamiltonian seems to improve the
probability by increasing the gap.
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Relation to the Size of Minimum Gap

Stoquastic Coupled Hamiltonian:
* Affects instances with a large range of gaps
* The gap always gets bigger.

Stoquastic Hamiltonians improve the probability by
increasing the size of the gap \/



Affected Instances: Min Gap Distribution
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Relation to the Size of Minimum Gap

Stoquastic Coupled Hamiltonian:
* Affects instances with a large range of gaps
* The gap always gets bigger.

Stoquastic Hamiltonians improve the probability by
increasing the size of the gap \/

Non-Stoquastic Coupled Hamiltonians:
* Affects problems with smaller gaps
* No clear correlation with the change in the size of
minimum gap

What is going on here!



Frustration and Degeneracy

H=Y X;+ Y X;X;+» Ji;ZiZ;+ Y hiZ

Anti-ferromagnetic Couplings on a fully-connected graph

\

Frustration in the X Component of the Spins

\

Near-degenerate States

{

Additional Anti-crossings
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Probability

Energy

04

03

0.2

0.1

Success Probability & Minimum Gap

H;

= 0

|
Probability

Px ~ 20% %

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.9

Non-Stoquastic: i = +ZXz'Xj

i<j

Crosson et al,‘14

Similar phenomenon has been reported for the worst cases of MAX 2-SAT.
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Number of Anti-Crossings

0
<nF> < <N%> <Na> > <N°A>

Stoquastic Non-Stoguastic



Relation to the Size of Minimum Gap

Stoquastic Hamiltonian seems to improve the success
probability by increasing the size of the minimum gap.

Non-Stoquastic Hamiltonians might be improving the
success probability by increasing the number of anti-
crossings.



Enhancements & Trends v. System Size

Stoquastic Non-Stoguastic



Enhancements & Trends v. System Size

Stoquastic Non-Stoguastic



Summary

Stoquastic Coupled Hamiltonians:
* Improve large fractions of instances.
* Fractions grow with the system size.
* The actual improvement is small.
* Tend to improve on easier problems with larger gaps.
* Seem to improve the probability by increasing the minimum gap.

Non-Stoquastic Coupled Hamiltonians:
* Improve smaller fractions of instances.
* Fractions remain constant as the system size grows.
* The actual improvement can be huge.
* Mainly improve on harder problems with smaller gaps.
* Might be improving the probability by increasing the number of
anti-crossings.

PRB 95, 184416 (2017)



