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A

B

2. A can be simulated efficiently 
using a classical computer.

1. A and B are both ‘quantum 
optimization machines.’

3. B cannot be simulated efficiently 
using a classical computer.

Is there a difference between the performance of A and B in 
solving optimization problems? 

The Basic Idea



Quantum Annealing

1. Encode a potentially hard optimization problem into parameters of a 
disordered Ising Hamiltonian:              Problem Hamiltonian

Kadowaki & Nishimori, ‘98
Farhi et al., ‘00

Jij
i

j

2

2.2. Step 2. Calculating the metrics identified in Step 1 – Numerical Tests (ACCOMPLISHED)

To obtain an overall picture of the behavior of di↵erent systems, I have performed various numerical tests on small
size systems (up to 9 spins) for di↵erent Hamiltonians, as well as di↵erent annealing schedules. The observations from
these numerical tests have resulted in a rough idea of the structure of the spectra, the sizes and locations of minimum
gaps for small systems and have provided a quick visual comparison between di↵erent systems and di↵erent problems.
The annealing Hamiltonian has the following general form:

H = ↵(s) H0 + �(s) Hp (1)

s = t/⌧ (2)

Here H0 is the initial Hamiltonian, which is also responsible for generating quantum fluctuations. Hp is the problem
Hamiltonian, where the desired optimization problem is encoded. The functions ↵(t) and �(t) determine the annealing
schedule as a function of time t. In its standard form ↵(0) = 1 and �(0) = 0 while for the total annealing time ⌧ , we
have ↵(⌧) = 0 and �(⌧) = 1. Below is a summary of tests performed and the corresponding obtained results.

2.2.1. Di↵erent Problem Hamiltonians

The general form of the problem Hamiltonian is as follows:

Hp =
X

i<j

JijZiZj +
X

i

hiZi (3)

where Zi is the Pauli operator �z for the ith spin, and Jij and hi are two-body couplings and local fields applied to
individual spins, respectively. We consider two di↵erent options for the couplings to model the following two problems:

• The Sherrington-Kirkpatrick model of Ising spin glass, i.e. random real couplings with zero mean and fixed variance.

• The graph partitioning problem, which means the random values are limited to +1 and �1.

Result: As far as the overall structure of the spectra is concerned, there doesn’t seem to be a qualitative di↵erence

between the Sherrington-Kirkpatrick model and the graph partitioning problem. Therefore the two might have

similar critical properties and conclusions about one might be applicable to the other without serious modifica-

tions [plots to be inserted].

2.2.2. Di↵erent Initial (fluctuation) Hamiltonians

I have been asked to consider the following initial (fluctuation) Hamiltonians:

• Simple transverse field: H0 =
P

i Xi,

• Transverse field and ferromagnetic couplings: H0 = �
P

i<j XiXj +
P

i Xi

• Transverse field and anti-ferromagnetic couplings: H0 =
P

i<j XiXj +
P

i Xi.

Result: The structure of the spectra seem to indicate that in most cases the choice of the initial Hamiltonian as a

combination of ferromagnetic couplings and transverse field provides the largest gaps throughout the evolution

process compared to the other two choices [plots to be inserted].

2.2.3. Di↵erent Annealing Schedules

I have also studied two di↵erent annealing schedules:

• Linear, i.e. H = (1� t)H0 + tHp

• Sinusoidal: H = cos2(t)H0 + sin2(t)Hp + sin(t) cos(t)
P

i<j(ZiXj +XiZj)

The latter was inspired by a proposal for the implementation of ZZ and XX couplings in superconducting qubits
though its actual application requires further fine-tuning.

Result: The sinusoidal annealing schedule seems to produce larger gaps compared to the linear case throughout the

evolution process [plots to be inserted].

Traveling Salesman Problem 

Goal: Find the shortest path. 

Lucas, ‘14



Solution: The shortest path 

Quantum Annealing

1. Encode a potentially hard optimization problem into parameters of a 
disordered Ising Hamiltonian:              Problem Hamiltonian
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2.2. Step 2. Calculating the metrics identified in Step 1 – Numerical Tests (ACCOMPLISHED)

To obtain an overall picture of the behavior of di↵erent systems, I have performed various numerical tests on small
size systems (up to 9 spins) for di↵erent Hamiltonians, as well as di↵erent annealing schedules. The observations from
these numerical tests have resulted in a rough idea of the structure of the spectra, the sizes and locations of minimum
gaps for small systems and have provided a quick visual comparison between di↵erent systems and di↵erent problems.
The annealing Hamiltonian has the following general form:

H = ↵(s) H0 + �(s) Hp (1)

s = t/⌧ (2)

Here H0 is the initial Hamiltonian, which is also responsible for generating quantum fluctuations. Hp is the problem
Hamiltonian, where the desired optimization problem is encoded. The functions ↵(t) and �(t) determine the annealing
schedule as a function of time t. In its standard form ↵(0) = 1 and �(0) = 0 while for the total annealing time ⌧ , we
have ↵(⌧) = 0 and �(⌧) = 1. Below is a summary of tests performed and the corresponding obtained results.

2.2.1. Di↵erent Problem Hamiltonians

The general form of the problem Hamiltonian is as follows:

Hp =
X

i<j

JijZiZj +
X

i

hiZi (3)

where Zi is the Pauli operator �z for the ith spin, and Jij and hi are two-body couplings and local fields applied to
individual spins, respectively. We consider two di↵erent options for the couplings to model the following two problems:

• The Sherrington-Kirkpatrick model of Ising spin glass, i.e. random real couplings with zero mean and fixed variance.

• The graph partitioning problem, which means the random values are limited to +1 and �1.

Result: As far as the overall structure of the spectra is concerned, there doesn’t seem to be a qualitative di↵erence

between the Sherrington-Kirkpatrick model and the graph partitioning problem. Therefore the two might have

similar critical properties and conclusions about one might be applicable to the other without serious modifica-

tions [plots to be inserted].

2.2.2. Di↵erent Initial (fluctuation) Hamiltonians

I have been asked to consider the following initial (fluctuation) Hamiltonians:

• Simple transverse field: H0 =
P

i Xi,

• Transverse field and ferromagnetic couplings: H0 = �
P

i<j XiXj +
P

i Xi

• Transverse field and anti-ferromagnetic couplings: H0 =
P

i<j XiXj +
P

i Xi.

Result: The structure of the spectra seem to indicate that in most cases the choice of the initial Hamiltonian as a

combination of ferromagnetic couplings and transverse field provides the largest gaps throughout the evolution

process compared to the other two choices [plots to be inserted].

2.2.3. Di↵erent Annealing Schedules

I have also studied two di↵erent annealing schedules:

• Linear, i.e. H = (1� t)H0 + tHp

• Sinusoidal: H = cos2(t)H0 + sin2(t)Hp + sin(t) cos(t)
P

i<j(ZiXj +XiZj)

The latter was inspired by a proposal for the implementation of ZZ and XX couplings in superconducting qubits
though its actual application requires further fine-tuning.

Result: The sinusoidal annealing schedule seems to produce larger gaps compared to the linear case throughout the

evolution process [plots to be inserted].

Groundstate configuration

Lucas, ‘14



Quantum Annealing

2. Initialize the system into the groundstate of an ‘easy’ Hamiltonian, 
traditionally a uniform transverse field:             Initial/Driver Hamiltonian
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Coupled Quantum Fluctuations and Quantum Annealing

Layla Hormozi

The aim of this project is to understand the relative e↵ectiveness of coupled quantum fluctuations of the form ±XX

compared to a simple transverse field (X) fluctuation in quantum annealing. In what follows we briefly outline the
problem and set up the notation and then provide a summary of some of the results obtained so far from numerically
studying small size systems.

I. DEFINITIONS AND NOTATION

A. Annealing Schedules

We consider three annealing schedules, each with di↵erent types of fluctuations as is summarized below. Note that
in all three cases s = t/⌧ 2 [0, 1] is the dimensionless linear time variable, with ⌧ bring the total annealing time.

1. The Quadratic Schedule

The first annealing schedule, taken from Ref. [1], gives rise to a total Hamiltonian of the form,

HF = (1� s)H0 + s(1� s)Hi + sHp, (1)

where the initial Hamiltonian is fixed to be,

H0 =
X

i

Xi (2)

and intermediate Hamiltonians assume the following three forms:

Hi = 0, (3)

Hi = �
X

i<j

XiXj/n1,

Hi = +
X

i<j

XiXj/n2.

Here n1 and n2 are free parameters, which we set to identity for now. One of the features of this Hamiltonian is that
for all three cases of intermediate Hamiltonians it starts from the same unique groundstate.

2. The Linear Schedule

The second Hamiltonian is what has been traditional considered for adiabatic quantum annealing. We call it HL

and has the form,

HL = (1� s)H0 + sHp, (4)

where the initial Hamiltonian takes three di↵erent forms,

H0 =
X

i

Xi, (5)

H0 =
X

i

Xi �
X

i<j

XiXj/n1,

H0 =
X

i

Xi +
X

i<j

XiXj/n2.



Quantum Annealing

3. Evolve the the total Hamiltonian slowly into the groundstate of the 
problem Hamiltonian:              Annealing Schedule
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2.2. Step 2. Calculating the metrics identified in Step 1 – Numerical Tests (ACCOMPLISHED)

To obtain an overall picture of the behavior of di↵erent systems, I have performed various numerical tests on small
size systems (up to 9 spins) for di↵erent Hamiltonians, as well as di↵erent annealing schedules. The observations from
these numerical tests have resulted in a rough idea of the structure of the spectra, the sizes and locations of minimum
gaps for small systems and have provided a quick visual comparison between di↵erent systems and di↵erent problems.
The annealing Hamiltonian has the following general form:

H = ↵(s) H0 + �(s) Hp (1)

s = t/⌧ (2)

Here H0 is the initial Hamiltonian, which is also responsible for generating quantum fluctuations. Hp is the problem
Hamiltonian, where the desired optimization problem is encoded. The functions ↵(t) and �(t) determine the annealing
schedule as a function of time t. In its standard form ↵(0) = 1 and �(0) = 0 while for the total annealing time ⌧ , we
have ↵(⌧) = 0 and �(⌧) = 1. Below is a summary of tests performed and the corresponding obtained results.

2.2.1. Di↵erent Problem Hamiltonians

The general form of the problem Hamiltonian is as follows:

Hp =
X

i<j

JijZiZj +
X

i

hiZi (3)

where Zi is the Pauli operator �z for the ith spin, and Jij and hi are two-body couplings and local fields applied to
individual spins, respectively. We consider two di↵erent options for the couplings to model the following two problems:

• The Sherrington-Kirkpatrick model of Ising spin glass, i.e. random real couplings with zero mean and fixed variance.

• The graph partitioning problem, which means the random values are limited to +1 and �1.

Result: As far as the overall structure of the spectra is concerned, there doesn’t seem to be a qualitative di↵erence

between the Sherrington-Kirkpatrick model and the graph partitioning problem. Therefore the two might have

similar critical properties and conclusions about one might be applicable to the other without serious modifica-

tions [plots to be inserted].

2.2.2. Di↵erent Initial (fluctuation) Hamiltonians

I have been asked to consider the following initial (fluctuation) Hamiltonians:

• Simple transverse field: H0 =
P

i Xi,

• Transverse field and ferromagnetic couplings: H0 = �
P

i<j XiXj +
P

i Xi

• Transverse field and anti-ferromagnetic couplings: H0 =
P

i<j XiXj +
P

i Xi.

Result: The structure of the spectra seem to indicate that in most cases the choice of the initial Hamiltonian as a

combination of ferromagnetic couplings and transverse field provides the largest gaps throughout the evolution

process compared to the other two choices [plots to be inserted].

2.2.3. Di↵erent Annealing Schedules

I have also studied two di↵erent annealing schedules:

• Linear, i.e. H = (1� t)H0 + tHp

• Sinusoidal: H = cos2(t)H0 + sin2(t)Hp + sin(t) cos(t)
P

i<j(ZiXj +XiZj)

The latter was inspired by a proposal for the implementation of ZZ and XX couplings in superconducting qubits
though its actual application requires further fine-tuning.

Result: The sinusoidal annealing schedule seems to produce larger gaps compared to the linear case throughout the

evolution process [plots to be inserted].

Coupled Quantum Fluctuations and Quantum Annealing

Layla Hormozi

The aim of this project is to understand the relative e↵ectiveness of coupled quantum fluctuations of the form ±XX

compared to a simple transverse field (X) fluctuation in quantum annealing. In what follows we briefly outline the
problem and set up the notation and then provide a summary of some of the results obtained so far from numerically
studying small size systems.

I. DEFINITIONS AND NOTATION

A. Annealing Schedules

We consider three annealing schedules, each with di↵erent types of fluctuations as is summarized below. Note that
in all three cases s = t/⌧ 2 [0, 1] is the dimensionless linear time variable, with ⌧ bring the total annealing time.

1. The Quadratic Schedule

The first annealing schedule, taken from Ref. [1], gives rise to a total Hamiltonian of the form,

HF = (1� s)H0 + s(1� s)Hi + sHp, (1)

where the initial Hamiltonian is fixed to be,

H0 =
X

i

Xi (2)

and intermediate Hamiltonians assume the following three forms:

Hi = 0, (3)

Hi = �
X

i<j

XiXj/n1,

Hi = +
X

i<j

XiXj/n2.

Here n1 and n2 are free parameters, which we set to identity for now. One of the features of this Hamiltonian is that
for all three cases of intermediate Hamiltonians it starts from the same unique groundstate.

2. The Linear Schedule

The second Hamiltonian is what has been traditional considered for adiabatic quantum annealing. We call it HL

and has the form,

HL = (1� s)H0 + sHp, (4)

where the initial Hamiltonian takes three di↵erent forms,

H0 =
X

i

Xi, (5)

H0 =
X

i

Xi �
X

i<j

XiXj/n1,

H0 =
X

i

Xi +
X

i<j

XiXj/n2.
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2.2. Step 2. Calculating the metrics identified in Step 1 – Numerical Tests (ACCOMPLISHED)

To obtain an overall picture of the behavior of di↵erent systems, I have performed various numerical tests on small
size systems (up to 9 spins) for di↵erent Hamiltonians, as well as di↵erent annealing schedules. The observations from
these numerical tests have resulted in a rough idea of the structure of the spectra, the sizes and locations of minimum
gaps for small systems and have provided a quick visual comparison between di↵erent systems and di↵erent problems.
The annealing Hamiltonian has the following general form:

H = ↵(s) H0 + �(s) Hp (1)

s = t/⌧ (2)

Here H0 is the initial Hamiltonian, which is also responsible for generating quantum fluctuations. Hp is the problem
Hamiltonian, where the desired optimization problem is encoded. The functions ↵(t) and �(t) determine the annealing
schedule as a function of time t. In its standard form ↵(0) = 1 and �(0) = 0 while for the total annealing time ⌧ , we
have ↵(⌧) = 0 and �(⌧) = 1. Below is a summary of tests performed and the corresponding obtained results.

2.2.1. Di↵erent Problem Hamiltonians

The general form of the problem Hamiltonian is as follows:

Hp =
X

i<j

JijZiZj +
X

i

hiZi (3)

where Zi is the Pauli operator �z for the ith spin, and Jij and hi are two-body couplings and local fields applied to
individual spins, respectively. We consider two di↵erent options for the couplings to model the following two problems:

• The Sherrington-Kirkpatrick model of Ising spin glass, i.e. random real couplings with zero mean and fixed variance.

• The graph partitioning problem, which means the random values are limited to +1 and �1.

Result: As far as the overall structure of the spectra is concerned, there doesn’t seem to be a qualitative di↵erence

between the Sherrington-Kirkpatrick model and the graph partitioning problem. Therefore the two might have

similar critical properties and conclusions about one might be applicable to the other without serious modifica-

tions [plots to be inserted].

2.2.2. Di↵erent Initial (fluctuation) Hamiltonians

I have been asked to consider the following initial (fluctuation) Hamiltonians:

• Simple transverse field: H0 =
P

i Xi,

• Transverse field and ferromagnetic couplings: H0 = �
P

i<j XiXj +
P

i Xi

• Transverse field and anti-ferromagnetic couplings: H0 =
P

i<j XiXj +
P

i Xi.

Result: The structure of the spectra seem to indicate that in most cases the choice of the initial Hamiltonian as a

combination of ferromagnetic couplings and transverse field provides the largest gaps throughout the evolution

process compared to the other two choices [plots to be inserted].

2.2.3. Di↵erent Annealing Schedules

I have also studied two di↵erent annealing schedules:

• Linear, i.e. H = (1� t)H0 + tHp

• Sinusoidal: H = cos2(t)H0 + sin2(t)Hp + sin(t) cos(t)
P

i<j(ZiXj +XiZj)

The latter was inspired by a proposal for the implementation of ZZ and XX couplings in superconducting qubits
though its actual application requires further fine-tuning.

Result: The sinusoidal annealing schedule seems to produce larger gaps compared to the linear case throughout the

evolution process [plots to be inserted].
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quantum system to a (d + 1)-dimensional classical one.
The quantum partition function can then be mapped to
the partition function of p copies of a classical system,
which occupy an extra dimension, thus taking the form,

Z = tr e��H ' tr (e��H/p)p, (1)

where � is proportional to the inverse temperature. This
additional dimension can be interpreted as imaginary
time with each time slice defined as,

�⌧ = �/p. (2)

The partition function is then reduced to p sums over
complete sets of basis states, {l1}, ...{lp}, which are
weighted by the size of the time slice and the o↵-diagonal
matrix elements of H,

Z '
pY

j=1

X

lj

hlj |e��⌧Hj,j+1 |lj+1i. (3)

When the o↵-diagonal matrix elements, Hj,j+1, are
zero or negative, these weights are purely positive for
each time slice, which in turn enables the stochastic sam-
pling of these configurations in a QMC simulation. These
Hamiltonians are dubbed ‘stoquastic’ [17], which com-
bines the words ‘quantum’ and ‘stochastic.’ Here, for all
practical purposes, the term ‘stoquastic’ simply means
‘avoiding the sign problem.’ [20]

For Hamiltonians whose matrix representations in
the computational basis have positive or complex o↵-
diagonal elements, the corresponding weights in Eq. (3)
will be non-positive. These Hamiltonians are generally
more complex than stoquastic ones [21], and they consti-
tute an essential ingredient for universal adiabatic quan-
tum computing [22, 23].

Here we examine the potential power of this complex-
ity in a di↵erent context and ask whether quantum an-
nealers with nonstoquastic Hamiltonians can show supe-
rior performance as optimization machines. Along these
lines, Ref. 24 provides encouraging evidence that, for
certain problems, nonstoquastic Hamiltonians can pro-
vide a scaling advantage over the traditionally-studied
transverse-field annealing Hamiltonians.

To realize a concrete analysis, we pick a long-range
Ising spin glass model as our problem Hamiltonian,
choose a specific annealing schedule, fix a total annealing
time and measure the performance of our nonstoquas-
tic Hamiltonian by calculating success probabilities in a
range of system sizes. In what follows, we first set the
stage in Section II by briefly explaining the notation and
the methods used. We then present the numerical results
in Section III, and conclude by presenting a discussion
of our observations in Section IV.

II. SETTING UP THE PROBLEM

A. The Notation

The problem Hamiltonian, encoded as an Ising model,
generally has the form,

HP =
NX

i<j=1

Jij�
z

i
�z

j
+

NX

i=1

hi�
z

i
, (4)

where the choices of pairwise couplings, Jij , and the in-
dividually applied fields, hi, determine the specific opti-
mization problem of interest. Here we focus on a disor-
dered spin glass problem that resembles the Sherrington-
Kirkpatrick (SK) model [25]. This model is infinite-
dimensional in the thermodynamic limit and it has been
shown that its worst cases are nondeterministic poly-
nomially (NP) hard [26]. The problem is defined on a
fully-connected graph, i.e. every pair of spins is coupled,
and the parameters hi and Jij are randomly chosen from
a continuous Gaussian distribution with zero mean and
unit variance [27].

The original time-dependent Hamiltonian for the adi-
abatic quantum algorithm has the form [7],

H(s) = (1� s)H0 + sHP , (5)

where ⌧ = t/T 2 [0, 1] is the dimensionless annealing
parameter and T is the total annealing time. The be-
ginning Hamiltonian (at t = 0), whose ground state is
unique and easy to implement, is traditionally chosen to
be the uniform transverse-field Hamiltonian,

HB =
NX

i=1

�x

i
. (6)

Each term in HB e↵ectively flips a spin in the computa-
tional basis, thus it is a driver for quantum fluctuations,
which allow the system to explore the energy landscape
of the problem Hamiltonian during the annealing pro-
cess. As t increases, the strength of the driver terms
decrease while the strength of the problem Hamiltonian
increases. If this process is done slowly enough so that
the adiabatic theorem can be applied, then at t = T the
ground state of the system should evolve into the ground
state of Hp [7].

The Hamiltonian H0 (Eq. (5)) is stoquastic but, by
suitably modifying the driver terms, a nonstoquastic
Hamiltonian can be obtained. In this work we use driver
Hamiltonians that include terms of the form �x

i
�x

j
with

both antiferromagnetic and ferromagnetic couplings [23,
28–31]. To avoid the degeneracy resulting from the frus-
trated state of antiferromagnetically-coupled spins on a
fully-connected graph, following Ref. 32, we choose our
total annealing Hamiltonian to be of the form,

H(⌧) = (1� ⌧)HB + �⌧(1� ⌧)HI + ⌧HP , (7)

where we begin with the unique ground state of HB and
enter the additional coupled driver terms, �x

i
�x

j
, via the

intermediate term, HI . The parameter � can in general
control the strength ofHI but here is set to be � = 1 [33].

Note that in the computational basis, the local e↵ect
of each �x

i
�x

j
term is to flip the ith and jth spins simul-

taneously. To distinguish the e↵ect of flipping a pair
of spins (as opposed to a single spin flip due to HB)
from the possible specific e↵ects of nonstoquasticity, we
also consider an intermediate Hamiltonian with uniform
ferromagnetic couplings. Thus, we end up with the fol-
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4. Measure the final spin configuration. This will (hopefully) be an answer to 
the optimization problem.
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2.2. Step 2. Calculating the metrics identified in Step 1 – Numerical Tests (ACCOMPLISHED)

To obtain an overall picture of the behavior of di↵erent systems, I have performed various numerical tests on small
size systems (up to 9 spins) for di↵erent Hamiltonians, as well as di↵erent annealing schedules. The observations from
these numerical tests have resulted in a rough idea of the structure of the spectra, the sizes and locations of minimum
gaps for small systems and have provided a quick visual comparison between di↵erent systems and di↵erent problems.
The annealing Hamiltonian has the following general form:

H = ↵(s) H0 + �(s) Hp (1)

s = t/⌧ (2)

Here H0 is the initial Hamiltonian, which is also responsible for generating quantum fluctuations. Hp is the problem
Hamiltonian, where the desired optimization problem is encoded. The functions ↵(t) and �(t) determine the annealing
schedule as a function of time t. In its standard form ↵(0) = 1 and �(0) = 0 while for the total annealing time ⌧ , we
have ↵(⌧) = 0 and �(⌧) = 1. Below is a summary of tests performed and the corresponding obtained results.

2.2.1. Di↵erent Problem Hamiltonians

The general form of the problem Hamiltonian is as follows:

Hp =
X

i<j

JijZiZj +
X

i

hiZi (3)

where Zi is the Pauli operator �z for the ith spin, and Jij and hi are two-body couplings and local fields applied to
individual spins, respectively. We consider two di↵erent options for the couplings to model the following two problems:

• The Sherrington-Kirkpatrick model of Ising spin glass, i.e. random real couplings with zero mean and fixed variance.

• The graph partitioning problem, which means the random values are limited to +1 and �1.

Result: As far as the overall structure of the spectra is concerned, there doesn’t seem to be a qualitative di↵erence

between the Sherrington-Kirkpatrick model and the graph partitioning problem. Therefore the two might have

similar critical properties and conclusions about one might be applicable to the other without serious modifica-

tions [plots to be inserted].

2.2.2. Di↵erent Initial (fluctuation) Hamiltonians

I have been asked to consider the following initial (fluctuation) Hamiltonians:

• Simple transverse field: H0 =
P

i Xi,

• Transverse field and ferromagnetic couplings: H0 = �
P

i<j XiXj +
P

i Xi

• Transverse field and anti-ferromagnetic couplings: H0 =
P

i<j XiXj +
P

i Xi.

Result: The structure of the spectra seem to indicate that in most cases the choice of the initial Hamiltonian as a

combination of ferromagnetic couplings and transverse field provides the largest gaps throughout the evolution

process compared to the other two choices [plots to be inserted].

2.2.3. Di↵erent Annealing Schedules

I have also studied two di↵erent annealing schedules:

• Linear, i.e. H = (1� t)H0 + tHp

• Sinusoidal: H = cos2(t)H0 + sin2(t)Hp + sin(t) cos(t)
P

i<j(ZiXj +XiZj)

The latter was inspired by a proposal for the implementation of ZZ and XX couplings in superconducting qubits
though its actual application requires further fine-tuning.

Result: The sinusoidal annealing schedule seems to produce larger gaps compared to the linear case throughout the

evolution process [plots to be inserted].

Coupled Quantum Fluctuations and Quantum Annealing

Layla Hormozi

The aim of this project is to understand the relative e↵ectiveness of coupled quantum fluctuations of the form ±XX

compared to a simple transverse field (X) fluctuation in quantum annealing. In what follows we briefly outline the
problem and set up the notation and then provide a summary of some of the results obtained so far from numerically
studying small size systems.

I. DEFINITIONS AND NOTATION

A. Annealing Schedules

We consider three annealing schedules, each with di↵erent types of fluctuations as is summarized below. Note that
in all three cases s = t/⌧ 2 [0, 1] is the dimensionless linear time variable, with ⌧ bring the total annealing time.

1. The Quadratic Schedule

The first annealing schedule, taken from Ref. [1], gives rise to a total Hamiltonian of the form,

HF = (1� s)H0 + s(1� s)Hi + sHp, (1)

where the initial Hamiltonian is fixed to be,

H0 =
X

i

Xi (2)

and intermediate Hamiltonians assume the following three forms:

Hi = 0, (3)

Hi = �
X

i<j

XiXj/n1,

Hi = +
X

i<j

XiXj/n2.

Here n1 and n2 are free parameters, which we set to identity for now. One of the features of this Hamiltonian is that
for all three cases of intermediate Hamiltonians it starts from the same unique groundstate.

2. The Linear Schedule

The second Hamiltonian is what has been traditional considered for adiabatic quantum annealing. We call it HL

and has the form,

HL = (1� s)H0 + sHp, (4)

where the initial Hamiltonian takes three di↵erent forms,

H0 =
X

i

Xi, (5)
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X

i
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X

i
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X

i<j

XiXj/n2.
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We study the role of Hamiltonian complexity in the performance of quantum annealers. We
consider two general classes of annealing Hamiltonians: stoquastic ones, which can be simulated ef-
ficiently using the quantum Monte Carlo algorithm, and nonstoquastic ones, which cannot be treated
e�ciently. We implement the latter by adding antiferromagnetically coupled two-spin driver terms
to the traditionally studied transverse-field Ising model, and compare their performance to that
of similar stoquastic Hamiltonians with ferromagnetically coupled additional terms. We focus on
a model of long-range Ising spin glass as our problem Hamiltonian and carry out the comparison
between the annealers by numerically calculating their success probabilities in solving random in-
stances of the problem Hamiltonian in systems of up to 17 spins. We find that, for a small percentage
of mostly harder instances, nonstoquastic Hamiltonians greatly outperform their stoquastic coun-
terparts and their superiority persists as the system size grows. We conjecture that the observed
improved performance is closely related to the frustrated nature of nonstoquastic Hamiltonians

I. INTRODUCTION

� (1)

Physically-inspired approaches play a prominent role
in both analyzing and devising solution strategies to
complex optimization problems. For example, a large
number of combinatorial optimization problems can be
encoded into the couplings of Ising Hamiltonians, such
that the minimum-energy configuration of the latter cor-
responds to the optimal solution of the former [1–4]. In
principle, at low enough temperatures these physical sys-
tems should eventually relax to their ground state, which
subsequently can be measured and decoded to provide a
solution to the original optimization problem. In reality,
however, the relaxation time can be extremely long. In
the language of disordered Ising models, the hardness of
the encoded optimization problems can be attributed to
the rough shape of the energy landscapes of the corre-
sponding Hamiltonians in the configuration space, which
typically consist of many hills and valleys [3]. The pres-
ence of these local extrema renders the task of finding
the global minimum of the system (i.e. the true ground
state) very di�cult.
To overcome this problem, quantum annealing was

first introduced as a computational simulation method,
similar to simulated annealing [5], but with quantum
fluctuations taking the place of thermal fluctuations [6].
The idea of quantum annealing is then to use quan-
tum fluctuations to allow the system to tunnel through
‘spiky’ barriers, for which simulated annealing is ine�-
cient, thereby improving the system’s chance to explore
the configuration space more e�ciently. Similar to sim-
ulated annealing, in this case the strength of the fluctua-
tions is gradually reduced to zero, allowing the system to
relax into the ground state of the problem Hamiltonian.
A quantum annealing device is a machine that phys-

ically implements this approach by realizing a time-
dependent Hamiltonian, which attempts to follow the

adiabatic quantum algorithm [7–10]. This machine is ini-
tialized in the ground state of a beginning Hamiltonian,
then evolves in time while following the adiabatic path
as closely as possible, to finally relax into the ground
state of the problem Hamiltonian. The final ground state
configuration can be subsequently measured to provide
a solution to the encoded optimization problem. Follow-
ing the recent technological advances in manufacturing
systems of coupled qubits, the idea of building a special-
purpose quantum annealing device to solve optimization
problems has attracted much attention and prototypes
of such devices have already been implemented [11–13].

Recent studies of the performance of these quantum
annealers, compared to quantum Monte Carlo (QMC)
simulations, have shown that for tunneling between the
local minima in the energy landscape, quantum anneal-
ing and QMC exhibit the same scaling of computational
time with system size [14–16]. This observation has led
to the conjecture that if QMC is ine�cient in simulat-
ing a problem, then a quantum annealer is also ine�-
cient in solving that problem so long as its Hamiltonian
along the annealing path belongs to the class of the so-
called stoquastic Hamiltonians, for which sign-problem-
free QMC simulations can be performed. This conjecture
implies that for a physical quantum annealing device to
have any chance of out-performing classical algorithms
(such as QMC), it must take advantage of nonstoquastic
Hamiltonians, for which e�cient QMC cannot be per-
formed [17, 18].

The formal definition of stoquastic Hamiltonians
states that their path-integral configurations (in some
local computational basis), contributing to the partition
function, all have real and non-negative weights. For
this to be true, it su�ces to have matrix representations
in the computational basis with real and non-positive
o↵-diagonal matrix elements [17]. These Hamiltonians
include bosonic problems, non-frustrated quantum mag-
nets and certain special fermionic problems [18]. In gen-
eral, for these systems QMC algorithms can e�ciently
update the path-integral configurations and propose new
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2.2. Step 2. Calculating the metrics identified in Step 1 – Numerical Tests (ACCOMPLISHED)

To obtain an overall picture of the behavior of di↵erent systems, I have performed various numerical tests on small
size systems (up to 9 spins) for di↵erent Hamiltonians, as well as di↵erent annealing schedules. The observations from
these numerical tests have resulted in a rough idea of the structure of the spectra, the sizes and locations of minimum
gaps for small systems and have provided a quick visual comparison between di↵erent systems and di↵erent problems.
The annealing Hamiltonian has the following general form:

H = ↵(s) H0 + �(s) Hp (1)

s = t/⌧ (2)

Here H0 is the initial Hamiltonian, which is also responsible for generating quantum fluctuations. Hp is the problem
Hamiltonian, where the desired optimization problem is encoded. The functions ↵(t) and �(t) determine the annealing
schedule as a function of time t. In its standard form ↵(0) = 1 and �(0) = 0 while for the total annealing time ⌧ , we
have ↵(⌧) = 0 and �(⌧) = 1. Below is a summary of tests performed and the corresponding obtained results.

2.2.1. Di↵erent Problem Hamiltonians

The general form of the problem Hamiltonian is as follows:

Hp =
X

i<j

JijZiZj +
X

i

hiZi (3)

where Zi is the Pauli operator �z for the ith spin, and Jij and hi are two-body couplings and local fields applied to
individual spins, respectively. We consider two di↵erent options for the couplings to model the following two problems:

• The Sherrington-Kirkpatrick model of Ising spin glass, i.e. random real couplings with zero mean and fixed variance.

• The graph partitioning problem, which means the random values are limited to +1 and �1.

Result: As far as the overall structure of the spectra is concerned, there doesn’t seem to be a qualitative di↵erence

between the Sherrington-Kirkpatrick model and the graph partitioning problem. Therefore the two might have

similar critical properties and conclusions about one might be applicable to the other without serious modifica-

tions [plots to be inserted].

2.2.2. Di↵erent Initial (fluctuation) Hamiltonians

I have been asked to consider the following initial (fluctuation) Hamiltonians:

• Simple transverse field: H0 =
P

i Xi,

• Transverse field and ferromagnetic couplings: H0 = �
P

i<j XiXj +
P

i Xi

• Transverse field and anti-ferromagnetic couplings: H0 =
P

i<j XiXj +
P

i Xi.

Result: The structure of the spectra seem to indicate that in most cases the choice of the initial Hamiltonian as a

combination of ferromagnetic couplings and transverse field provides the largest gaps throughout the evolution

process compared to the other two choices [plots to be inserted].

2.2.3. Di↵erent Annealing Schedules

I have also studied two di↵erent annealing schedules:

• Linear, i.e. H = (1� t)H0 + tHp

• Sinusoidal: H = cos2(t)H0 + sin2(t)Hp + sin(t) cos(t)
P

i<j(ZiXj +XiZj)

The latter was inspired by a proposal for the implementation of ZZ and XX couplings in superconducting qubits
though its actual application requires further fine-tuning.

Result: The sinusoidal annealing schedule seems to produce larger gaps compared to the linear case throughout the

evolution process [plots to be inserted].

Stoquastic  
but hard

Non-Stoquastic

Additional Terms
i

Universal adiabatic quantum computing is possible for 
non-stoquastic Hamiltonians. Aharonov et al, ‘04
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Here we check the relation between the structure and performance of Hamiltonians with �XX terms and their

mean field approximations.

1. QUICK REVIEW OF NOTATION

Z = Tr e
��H

=

X

i

pi (1)

pi � 0 (2)

pi < 0 (3)

H = ↵(s)

X

i<j

XiXj + �(s)Hp (4)

H = ↵

X

i<j

XiXj + �Hp (5)

H = (1� s)

X

i<j

XiXj + sHp (6)

(7)

Annealing Schedules: We consider two annealing schedules, each with di↵erent types of fluctuations as is sum-

marized below. Note that in all three cases s = t/⌧ 2 [0, 1] is the dimensionless linear time variable, with ⌧ bring the

total annealing time. The first annealing schedule corresponds to the familiar Hamiltonian of the form,

HL = (1� s)H0 + sHp, (8)

which for the choice of the initial Hamiltonian to be a simple transverse field, i.e.

H0 =

X

i

Xi, (9)

was originally proposed for adiabatic quantum computing. Here, in addition to Eq. (9) we also consider an initial

Hamiltonian that includes ferromagnetic coupling terms as well, which gives rise to,

H0 =

X

i

Xi �
X

i<j

XiXj . (10)

The second annealing schedule, gives rise to a total Hamiltonian of the form,

HF = (1� s)H0 + s(1� s)Hi + sHp, (11)

where the initial Hamiltonian is fixed to be,

H0 =

X

i

Xi (12)

and intermediate Hamiltonians assume the following two forms:

Hi = �
X

i<j

XiXj , (13)

Hi = +

X

i<j

XiXj . (14)

Problem Hamiltonians: The problem Hamiltonian is always of the form,

Hp =

X

i<j

JijZiZj +

X

i

hiZi, (15)

Here we check the relation between the structure and performance of Hamiltonians with �XX terms and their

mean field approximations.
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marized below. Note that in all three cases s = t/⌧ 2 [0, 1] is the dimensionless linear time variable, with ⌧ bring the
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HL = (1� s)H0 + sHp, (8)

which for the choice of the initial Hamiltonian to be a simple transverse field, i.e.

H0 =

X

i

Xi, (9)

was originally proposed for adiabatic quantum computing. Here, in addition to Eq. (9) we also consider an initial

Hamiltonian that includes ferromagnetic coupling terms as well, which gives rise to,

H0 =

X

i

Xi �
X

i<j

XiXj . (10)

The second annealing schedule, gives rise to a total Hamiltonian of the form,

HF = (1� s)H0 + s(1� s)Hi + sHp, (11)

where the initial Hamiltonian is fixed to be,

H0 =

X

i

Xi (12)

and intermediate Hamiltonians assume the following two forms:

Hi = �
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XiXj . (14)

Problem Hamiltonians: The problem Hamiltonian is always of the form,
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JijZiZj +

X

i

hiZi, (15)

Intrinsic non-stoquastic 
Hamiltonian

Here we check the relation between the structure and performance of Hamiltonians with �XX terms and their

mean field approximations.

1. QUICK REVIEW OF NOTATION

H0 6=
X

i<j

XiXj (1)

P
±
en

= log(
P±XX

PX

) (2)

R
±
en

=
N(P

±
en

> P
⌥
en

> 0)

N
(3)

Hj,j+1 < 0 (4)

⇠
pY

j=1

X

lj

wlj (5)

wlj = hlj |e��⌧Hj,j+1 |lj+1i (6)

{l1} (7)

.

.

. (8)

{l2} (9)

{lp} (10)

�⌧ ⌘ �/p (11)

Z = Tr e
��H
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p!1

Tr(e
��H/p

)
p ⇠

pY

j=1

X

lj

hlj |e��⌧Hj,j+1 |lj+1i (12)

Z = Tr e
��H

= lim
p!1

Tr(e
��H/p

)
p ⇠

X

{Si}

he��⌧hi|H|i+1ii (13)

Z = Tr e
��H

=

X

i

pi (14)

pi =

Y

x

Wx({Sx}) (15)

Wx = hSi,lSi+1,l|e��⌧Hi,i+1 |Si,l+1Si+1,l+1i (16)

pi � 0 (17)

pi < 0 (18)

H = ↵(s)

X

i<j

XiXj + �(s)Hp (19)

H = ↵

X

i<j

XiXj + �Hp (20)

H = ↵

X

i

Xi + �

X

i<j

XiXj + �Hp (21)

H = (1� s)

X

i<j

XiXj + sHp (22)

↵ > 0 (23)

[H0, Hp] 6= 0 (24)

Annealing Schedules: We consider two annealing schedules, each with di↵erent types of fluctuations as is sum-

marized below. Note that in all three cases s = t/⌧ 2 [0, 1] is the dimensionless linear time variable, with ⌧ bring the

total annealing time. The first annealing schedule corresponds to the familiar Hamiltonian of the form,

HL = (1� s)H0 + sHp, (25)

Additional Terms:

groundstate 
degeneracy



Annealing Schedules

Coupled Quantum Fluctuations and Quantum Annealing

Layla Hormozi

The aim of this project is to understand the relative e↵ectiveness of coupled quantum fluctuations of the form ±XX

compared to a simple transverse field (X) fluctuation in quantum annealing. In what follows we briefly outline the
problem and set up the notation and then provide a summary of some of the results obtained so far from numerically
studying small size systems.

I. DEFINITIONS AND NOTATION

A. Annealing Schedules

We consider three annealing schedules, each with di↵erent types of fluctuations as is summarized below. Note that
in all three cases s = t/⌧ 2 [0, 1] is the dimensionless linear time variable, with ⌧ bring the total annealing time.

1. The Quadratic Schedule

The first annealing schedule, taken from Ref. [1], gives rise to a total Hamiltonian of the form,

HF = (1� s)H0 + s(1� s)Hi + sHp, H = (1� s)H0 + s(1� s)Hi + sHp (1)

where the initial Hamiltonian is fixed to be,

H0 =
X

i

Xi (2)

and intermediate Hamiltonians assume the following three forms:

Hi = 0, (3)

Hi = �
X

i<j

XiXj/n1,

Hi = +
X

i<j

XiXj/n2.

Here n1 and n2 are free parameters, which we set to identity for now. One of the features of this Hamiltonian is that
for all three cases of intermediate Hamiltonians it starts from the same unique groundstate.

2. The Linear Schedule

The second Hamiltonian is what has been traditional considered for adiabatic quantum annealing. We call it HL

and has the form,

HL = (1� s)H0 + sHp, (4)

where the initial Hamiltonian takes three di↵erent forms,

H0 =
X

i

Xi, (5)

H0 =
X

i

Xi �
X

i<j

XiXj/n1,

H0 =
X

i

Xi +
X

i<j

XiXj/n2.
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Annealing Schedules: We consider two annealing schedules, each with di↵erent types of fluctuations as is sum-

marized below. Note that in all three cases s = t/⌧ 2 [0, 1] is the dimensionless linear time variable, with ⌧ bring the

total annealing time. The first annealing schedule corresponds to the familiar Hamiltonian of the form,

HL = (1� s)H0 + sHp, (35)

which for the choice of the initial Hamiltonian to be a simple transverse field, i.e.

H0 =

X

i

Xi, (36)

was originally proposed for adiabatic quantum computing. Here, in addition to Eq. (33) we also consider an initial

Hamiltonian that includes ferromagnetic coupling terms as well, which gives rise to,

H0 =

X

i

Xi �
X

i<j

XiXj . (37)

The second annealing schedule, gives rise to a total Hamiltonian of the form,

HF = (1� s)H0 + s(1� s)Hi + sHp, (38)

where the initial Hamiltonian is fixed to be,

H0 =

X

i

Xi (39)

and intermediate Hamiltonians assume the following two forms:

Hi = �
X

i<j

XiXj (40)

Hi = +

X

i<j

XiXj (41)

Hi =

X

i<j

(�1)
rijXiXj (42)

rij 2 {0, 1} (43)

Problem Hamiltonians: The problem Hamiltonian is always of the form,

Hp =

X

i<j

JijZiZj +

X

i

hiZi, (44)

on a fully-connected graph, i.e. i and j run over all pairs of spins in the system. Here we consider the Sherrington-

Kirkpatrick (SK) model where, Jij are randomly chosen from a continues Gaussian distribution with zero mean and

unit variance while the random fields, hi, can also be random or they can be set to zero. Note that the latter choice

leads to higher degeneracies and possibly to harder problems compared to hi 6= 0. Here we focus on the case where

hi = 0.

Metrics: We generally study success probability, residual energy and size of the minimum gap as measures for

comparing the performance of the above mentioned quantum fluctuations and annealing schedules. Here we focus

only on success probability, which we define as the overlap between the true groundstate of Hp and the approximate

groundstate resulting from numerically solving the time-dependent Schroedinger equation, i.e.

P (⌧) = |h 0| (s = 1)i|2. (45)

In the case of degenerate final groundstates, we redefine the success probability as the sum over individual success

probabilities with equal weights, i.e.

P (⌧) =

nX

i=1

|h i

0| (s = 1)i|2 (46)

3

Annealing Schedules: We consider two annealing schedules, each with di↵erent types of fluctuations as is sum-

marized below. Note that in all three cases s = t/⌧ 2 [0, 1] is the dimensionless linear time variable, with ⌧ bring the

total annealing time. The first annealing schedule corresponds to the familiar Hamiltonian of the form,

HL = (1� s)H0 + sHp, (35)

which for the choice of the initial Hamiltonian to be a simple transverse field, i.e.

H0 =

X

i

Xi, (36)

was originally proposed for adiabatic quantum computing. Here, in addition to Eq. (33) we also consider an initial

Hamiltonian that includes ferromagnetic coupling terms as well, which gives rise to,

H0 =

X

i

Xi �
X

i<j

XiXj . (37)

The second annealing schedule, gives rise to a total Hamiltonian of the form,

HF = (1� s)H0 + s(1� s)Hi + sHp, (38)

where the initial Hamiltonian is fixed to be,

H0 =

X

i

Xi (39)

and intermediate Hamiltonians assume the following two forms:

Hi = �
X
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XiXj (40)

Hi = +

X
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XiXj (41)
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X

i<j
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Problem Hamiltonians: The problem Hamiltonian is always of the form,

Hp =

X

i<j

JijZiZj +

X

i

hiZi, (44)

on a fully-connected graph, i.e. i and j run over all pairs of spins in the system. Here we consider the Sherrington-

Kirkpatrick (SK) model where, Jij are randomly chosen from a continues Gaussian distribution with zero mean and

unit variance while the random fields, hi, can also be random or they can be set to zero. Note that the latter choice

leads to higher degeneracies and possibly to harder problems compared to hi 6= 0. Here we focus on the case where

hi = 0.

Metrics: We generally study success probability, residual energy and size of the minimum gap as measures for

comparing the performance of the above mentioned quantum fluctuations and annealing schedules. Here we focus

only on success probability, which we define as the overlap between the true groundstate of Hp and the approximate

groundstate resulting from numerically solving the time-dependent Schroedinger equation, i.e.

P (⌧) = |h 0| (s = 1)i|2. (45)

In the case of degenerate final groundstates, we redefine the success probability as the sum over individual success

probabilities with equal weights, i.e.

P (⌧) =

nX

i=1

|h i

0| (s = 1)i|2 (46)
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2.2. Step 2. Calculating the metrics identified in Step 1 – Numerical Tests (ACCOMPLISHED)

To obtain an overall picture of the behavior of di↵erent systems, I have performed various numerical tests on small
size systems (up to 9 spins) for di↵erent Hamiltonians, as well as di↵erent annealing schedules. The observations from
these numerical tests have resulted in a rough idea of the structure of the spectra, the sizes and locations of minimum
gaps for small systems and have provided a quick visual comparison between di↵erent systems and di↵erent problems.
The annealing Hamiltonian has the following general form:

H = ↵(s) H0 + �(s) Hp (1)

s = t/⌧ (2)

Here H0 is the initial Hamiltonian, which is also responsible for generating quantum fluctuations. Hp is the problem
Hamiltonian, where the desired optimization problem is encoded. The functions ↵(t) and �(t) determine the annealing
schedule as a function of time t. In its standard form ↵(0) = 1 and �(0) = 0 while for the total annealing time ⌧ , we
have ↵(⌧) = 0 and �(⌧) = 1. Below is a summary of tests performed and the corresponding obtained results.

2.2.1. Di↵erent Problem Hamiltonians

The general form of the problem Hamiltonian is as follows:

Hp =
X

i<j

JijZiZj +
X

i

hiZi (3)

where Zi is the Pauli operator �z for the ith spin, and Jij and hi are two-body couplings and local fields applied to
individual spins, respectively. We consider two di↵erent options for the couplings to model the following two problems:

• The Sherrington-Kirkpatrick model of Ising spin glass, i.e. random real couplings with zero mean and fixed variance.

• The graph partitioning problem, which means the random values are limited to +1 and �1.

Result: As far as the overall structure of the spectra is concerned, there doesn’t seem to be a qualitative di↵erence

between the Sherrington-Kirkpatrick model and the graph partitioning problem. Therefore the two might have

similar critical properties and conclusions about one might be applicable to the other without serious modifica-

tions [plots to be inserted].

2.2.2. Di↵erent Initial (fluctuation) Hamiltonians

I have been asked to consider the following initial (fluctuation) Hamiltonians:

• Simple transverse field: H0 =
P

i Xi,

• Transverse field and ferromagnetic couplings: H0 = �
P

i<j XiXj +
P

i Xi

• Transverse field and anti-ferromagnetic couplings: H0 =
P

i<j XiXj +
P

i Xi.

Result: The structure of the spectra seem to indicate that in most cases the choice of the initial Hamiltonian as a

combination of ferromagnetic couplings and transverse field provides the largest gaps throughout the evolution

process compared to the other two choices [plots to be inserted].

2.2.3. Di↵erent Annealing Schedules

I have also studied two di↵erent annealing schedules:

• Linear, i.e. H = (1� t)H0 + tHp

• Sinusoidal: H = cos2(t)H0 + sin2(t)Hp + sin(t) cos(t)
P

i<j(ZiXj +XiZj)

The latter was inspired by a proposal for the implementation of ZZ and XX couplings in superconducting qubits
though its actual application requires further fine-tuning.

Result: The sinusoidal annealing schedule seems to produce larger gaps compared to the linear case throughout the

evolution process [plots to be inserted].
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2.2. Step 2. Calculating the metrics identified in Step 1 – Numerical Tests (ACCOMPLISHED)

To obtain an overall picture of the behavior of di↵erent systems, I have performed various numerical tests on small
size systems (up to 9 spins) for di↵erent Hamiltonians, as well as di↵erent annealing schedules. The observations from
these numerical tests have resulted in a rough idea of the structure of the spectra, the sizes and locations of minimum
gaps for small systems and have provided a quick visual comparison between di↵erent systems and di↵erent problems.
The annealing Hamiltonian has the following general form:

H = ↵(s) H0 + �(s) Hp (1)

s = t/⌧ (2)

Here H0 is the initial Hamiltonian, which is also responsible for generating quantum fluctuations. Hp is the problem
Hamiltonian, where the desired optimization problem is encoded. The functions ↵(t) and �(t) determine the annealing
schedule as a function of time t. In its standard form ↵(0) = 1 and �(0) = 0 while for the total annealing time ⌧ , we
have ↵(⌧) = 0 and �(⌧) = 1. Below is a summary of tests performed and the corresponding obtained results.

2.2.1. Di↵erent Problem Hamiltonians

The general form of the problem Hamiltonian is as follows:

Hp =
X

i<j

JijZiZj +
X

i

hiZi (3)

where Zi is the Pauli operator �z for the ith spin, and Jij and hi are two-body couplings and local fields applied to
individual spins, respectively. We consider two di↵erent options for the couplings to model the following two problems:

• The Sherrington-Kirkpatrick model of Ising spin glass, i.e. random real couplings with zero mean and fixed variance.

• The graph partitioning problem, which means the random values are limited to +1 and �1.

Result: As far as the overall structure of the spectra is concerned, there doesn’t seem to be a qualitative di↵erence

between the Sherrington-Kirkpatrick model and the graph partitioning problem. Therefore the two might have

similar critical properties and conclusions about one might be applicable to the other without serious modifica-

tions [plots to be inserted].

2.2.2. Di↵erent Initial (fluctuation) Hamiltonians

I have been asked to consider the following initial (fluctuation) Hamiltonians:

• Simple transverse field: H0 =
P

i Xi,

• Transverse field and ferromagnetic couplings: H0 = �
P

i<j XiXj +
P

i Xi

• Transverse field and anti-ferromagnetic couplings: H0 =
P

i<j XiXj +
P

i Xi.

Result: The structure of the spectra seem to indicate that in most cases the choice of the initial Hamiltonian as a

combination of ferromagnetic couplings and transverse field provides the largest gaps throughout the evolution

process compared to the other two choices [plots to be inserted].

2.2.3. Di↵erent Annealing Schedules

I have also studied two di↵erent annealing schedules:

• Linear, i.e. H = (1� t)H0 + tHp

• Sinusoidal: H = cos2(t)H0 + sin2(t)Hp + sin(t) cos(t)
P

i<j(ZiXj +XiZj)

The latter was inspired by a proposal for the implementation of ZZ and XX couplings in superconducting qubits
though its actual application requires further fine-tuning.

Result: The sinusoidal annealing schedule seems to produce larger gaps compared to the linear case throughout the

evolution process [plots to be inserted].
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3. The Sinusoidal Schedule

The third annealing schedule is inspired by experimental feasibility [2] of manipulating superconducting qubits and
it gives rise to the following total Hamiltonian,

HS = (1� s)H0 +Hi + s(�
X

i<j

ZiZj +Hp).H = (1� s)H0 +Hi + s(�
X

i<j

ZiZj +Hp) (6)

Here again H0 =
P

i Xi while Hi is a time-dependent Hamiltonian of the form,

Hi =
X

i<j

cos ✓1 cos ✓2 XiXj + cos ✓1 sin ✓2 XiZj + sin ✓1 cos ✓2 ZiXj + sin ✓1 sin ✓2 ZiZj . (7)

Here ✓1, ✓2 are linear functions of time and we consider two choices. If ✓1 = ✓2 2 [0,⇡/2] then the XX coupling will
be ferro-magnetic, while for the choice of ✓1 2 [0,⇡/2], ✓2 2 [⇡,⇡/2], the XX coupling will be anti-ferro-magnetic.

B. Problem Hamiltonians

The problem Hamiltonian is always of the form,

Hp =
X

i<j

JijZiZj +
X

i

hiZi, (8)

on a fully-connected graph, i.e. i and j run over all pairs of spins in the system.

1. The Sherrington-Kirkpatrick Model

For the Sherrington-Kirkpatrick (SK) model, Jij are randomly chosen from a continues Gaussian distribution with
zero mean while the random fields, hi, can also be random or they can be set to zero. Note that the latter choice
leads to higher degeneracies and possibly to harder problems compared to hi 6= 0.

2. Graph-partitioning Problem

This is similar to SK, except that now the couplings are limited to two choices of ±1, i.e. Jij 2 {�1,+1}. Again
hi can be set to zero or take similar random binary values.

3. Graph-coloring/Job-Shop Scheduling Problems

4. Graph- isomorphism Problem

5. SAT Problems

C. Metrics

We consider three metrics for comparing the performance of the above mentioned quantum fluctuations and an-
nealing schedules. They are success probability, restdual energy and the size of the minimum gap as summarized
below.

1. Success Probability

We define the success probability as the overlap between the true groundstate ofHp and the approximate groundstate
resulting from numerically solving the time-dependent Schroedinger equation, i.e.

P (⌧) = |h 0| (s = 1)i|2. (9)

 Success Probability 
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2.2. Step 2. Calculating the metrics identified in Step 1 – Numerical Tests (ACCOMPLISHED)

To obtain an overall picture of the behavior of di↵erent systems, I have performed various numerical tests on small
size systems (up to 9 spins) for di↵erent Hamiltonians, as well as di↵erent annealing schedules. The observations from
these numerical tests have resulted in a rough idea of the structure of the spectra, the sizes and locations of minimum
gaps for small systems and have provided a quick visual comparison between di↵erent systems and di↵erent problems.
The annealing Hamiltonian has the following general form:

H = ↵(s) H0 + �(s) Hp (1)

s = t/⌧ (2)

Here H0 is the initial Hamiltonian, which is also responsible for generating quantum fluctuations. Hp is the problem
Hamiltonian, where the desired optimization problem is encoded. The functions ↵(t) and �(t) determine the annealing
schedule as a function of time t. In its standard form ↵(0) = 1 and �(0) = 0 while for the total annealing time ⌧ , we
have ↵(⌧) = 0 and �(⌧) = 1. Below is a summary of tests performed and the corresponding obtained results.

2.2.1. Di↵erent Problem Hamiltonians

The general form of the problem Hamiltonian is as follows:

Hp =
X

i<j

JijZiZj +
X

i

hiZi (3)

where Zi is the Pauli operator �z for the ith spin, and Jij and hi are two-body couplings and local fields applied to
individual spins, respectively. We consider two di↵erent options for the couplings to model the following two problems:

• The Sherrington-Kirkpatrick model of Ising spin glass, i.e. random real couplings with zero mean and fixed variance.

• The graph partitioning problem, which means the random values are limited to +1 and �1.

Result: As far as the overall structure of the spectra is concerned, there doesn’t seem to be a qualitative di↵erence

between the Sherrington-Kirkpatrick model and the graph partitioning problem. Therefore the two might have

similar critical properties and conclusions about one might be applicable to the other without serious modifica-

tions [plots to be inserted].

2.2.2. Di↵erent Initial (fluctuation) Hamiltonians

I have been asked to consider the following initial (fluctuation) Hamiltonians:

• Simple transverse field: H0 =
P

i Xi,

• Transverse field and ferromagnetic couplings: H0 = �
P

i<j XiXj +
P

i Xi

• Transverse field and anti-ferromagnetic couplings: H0 =
P

i<j XiXj +
P

i Xi.

Result: The structure of the spectra seem to indicate that in most cases the choice of the initial Hamiltonian as a

combination of ferromagnetic couplings and transverse field provides the largest gaps throughout the evolution

process compared to the other two choices [plots to be inserted].

2.2.3. Di↵erent Annealing Schedules

I have also studied two di↵erent annealing schedules:

• Linear, i.e. H = (1� t)H0 + tHp

• Sinusoidal: H = cos2(t)H0 + sin2(t)Hp + sin(t) cos(t)
P

i<j(ZiXj +XiZj)

The latter was inspired by a proposal for the implementation of ZZ and XX couplings in superconducting qubits
though its actual application requires further fine-tuning.

Result: The sinusoidal annealing schedule seems to produce larger gaps compared to the linear case throughout the

evolution process [plots to be inserted].
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lowing three intermediate Hamiltonians:
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In the latter case rij 2 {�1, 1} is randomly chosen, giv-
ing rise to an intermediate Hamiltonian with both ferro-
magnetic and antiferromagnetic couplings [34]. Here the
superscripts F , A and M refer to Ferromagnetic, Anti-
ferromagnetic and Mixed, respectively.

Inserting either HA
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or HM
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in Eq. (7) results in non-

stoquastic total Hamiltonians (for ⌧ 6= 0, 1), while in-
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I
in Eq. (7) produces a stoquastic Hamilto-

nian with coupled spin flip driver terms. In what follows
we will refer to the intermediate Hamiltonians as drivers
with coupled fluctuations, or simply as coupled drivers.

We compare the success rate of Hamiltonians with cou-
pled drivers against the original Hamiltonian with an un-
coupled driver term, H0 (Eq. (5)), as our reference. To
make referencing easier we label the Hamiltonians with
coupled drivers as,

H↵(⌧) = H0(⌧) + ⌧(1� ⌧)H↵

I
, (11)

where ↵ = F , A, M , correspond to stoquastic, non-
stoquastic with uniform antiferromagnetic driver terms
and non-stoquastic with mixed driver terms, respec-
tively. For the rest of this paper we use the same index
↵ for labeling various quantities such as success proba-
bilities, P↵, and minimum gaps, �↵, which result from
Hamiltonians H↵.

B. Methods and Metrics

Our main numerical tools are exact diagonalization, to
calculate the instantaneous energy spectra of the Hamil-
tonians H0 and H↵, and the numerical solution of the
time-dependent Schrödinger equation, to simulate the
process of quantum annealing,
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where we have set ~ = 1.
As our main metric of performance we choose the suc-

cess probability [28], defined as the square of the over-
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(⌧ = 1)i|2, (13)

for ↵ 2 {F,A,M}. In the case of degenerate final ground
states, we redefine the success probability as the sum
over individual success probabilities with equal weights.

We study systems of N spins where 6  N  17 and
choose a fixed annealing time of T = 100 for all system
sizes. For each system size we generate 10000 instances
and for each instance calculate the success probabilities
and the instantaneous energy spectra as functions of time
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is the success probability enhancement ratio, defined for
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the percentage of instances for which H↵ provides the
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III. NUMERICAL RESULTS
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' 1.47% and RM

en
' 8.38%.

The top panels of Fig. 1 show the distributions of the
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. We see that for the

stoquastic Hamiltonian the distribution is very uneven
with a sharp peak near the unity and a very modest 99th

percentile value of order O(10). In contrast, for the non-
stoquastic Hamiltonian HA we see that the distribution
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magnetic couplings RM
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fluctuates around a mean value
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romagnetic and antiferromagnetic couplings [12]. Here
the superscripts F , A and M refers to ferromagnetic,
antiferromagnetic and mixed, respectively.
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with coupled spin flip terms. In what follows we will refer
to the intermediate Hamiltonians as drivers with coupled
fluctuations, or simply as coupled drivers.

We compare the e↵ectiveness of Hamiltonians with
coupled drivers against the original Hamiltonian with an
uncoupled driver term, H0 (Eq. (5)), as our reference. To
make referencing easier we label the Hamiltonians with
coupled drivers as,
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Hamiltonians H↵.
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calculate the instantaneous energy spectra of the Hamil-
tonians H0 and H↵ as a function of time, and time-
dependent Schrödinger equation, to simulate the process
of quantum annealing,
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where we have set ~ = 1.
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comparing the performance of di↵erent Hamiltonians.
This quantity is defined as the square of the overlap be-
tween | gi, the true groundstate of HP , obtained from
exact diagonalization and | ↵
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ing the time-dependent Schrödinger equation associated
with the Hamiltonian H↵. Therefore,

P↵(T ) = |h g| ↵
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(⌧ = 1)i|2, (13)

for ↵ 2 {F,A,M}. In the case of degenerate final
groundstates, we redefine the success probability as a
sum over individual success probabilities with equal
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We study systems of N spins where 6  N  17 and
choose a fixed annealing time of T = 100 for all system
sizes. For each system size we generate 10000 instances
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each type of Hamiltonian with coupled drivers, H↵, as
the percentage of instances for which H↵ provides the
best improvement over H0, i.e. it performs better than
H0 as well as the other two Hamiltonians with coupled
drivers. If we denote the number of such instances with
L↵ and the total number of instances with L then we
have,
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=
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, (14)

for ↵ 2 {F,A,M}.
To further quantify the actual enhancement resulting

from coupled driver terms we define the success probabil-
ity enhancement, for each instance and each Hamiltonian
with coupled driver terms, as the ratio of the success
probability resulting from H↵ to the success probability
resulting from H0,
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here � 2 {0, F, A,M} and as before ↵ 2 {F,A,M}. Note
that given this definition we always have P↵
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> 1.

III. NUMERICAL RESULTS

A. Success probability Enhancement

We start our analysis by determining the success prob-
ability enhancement ratio, R↵
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for ↵ 2 {F,A,M}, i.e.
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with coupled driver terms provides the best success prob-
ability improvement with respect to H0. The panels in
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,

for a system of N = 17 spins. For the stoquastic Hamil-
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' 1.47% and RM
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' 8.38%.
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of spins (as opposed to a single spin flip due to HB)
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In the latter case rij 2 {�1, 1} is randomly chosen, giv-
ing rise to an intermediate Hamiltonian with both fer-
romagnetic and antiferromagnetic couplings [12]. Here
the superscripts F , A and M refers to ferromagnetic,
antiferromagnetic and mixed, respectively.

Inserting either HA

I
or HM

I
in Eq. (7) results in non-

stoquastic total Hamiltonians (while ⌧ 6= 0, 1), while in-
serting HF

I
in Eq. (7) produces a stoquastic Hamiltonian

with coupled spin flip terms. In what follows we will refer
to the intermediate Hamiltonians as drivers with coupled
fluctuations, or simply as coupled drivers.

We compare the e↵ectiveness of Hamiltonians with
coupled drivers against the original Hamiltonian with an
uncoupled driver term, H0 (Eq. (5)), as our reference. To
make referencing easier we label the Hamiltonians with
coupled drivers as,

H↵(⌧) = H0(⌧) + ⌧(1� ⌧)H↵

I
, (11)

where ↵ = F,A,M correspond to stoquastic, non-
stoquastic with uniform antiferromagnetic driver terms
and non-stoquastic with mixed-sign driver terms, respec-
tively. For the rest of this paper we use the same indices
for labeling various quantities such as success probabil-
ities, P↵, and minimum gaps, �↵, which result from
Hamiltonians H↵.

B. Methods and Metrics

Our main numerical tools are exact diagonalization, to
calculate the instantaneous energy spectra of the Hamil-
tonians H0 and H↵ as a function of time, and time-
dependent Schrödinger equation, to simulate the process
of quantum annealing,
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where we have set ~ = 1.

We choose success probability as our main metric for
comparing the performance of di↵erent Hamiltonians.
This quantity is defined as the square of the overlap be-
tween | gi, the true groundstate of HP , obtained from
exact diagonalization and | ↵
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(⌧ = 1)i, the approxi-

mate groundstate ofHP , resulting from numerically solv-
ing the time-dependent Schrödinger equation associated
with the Hamiltonian H↵. Therefore,

P↵(T ) = |h g| ↵
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(⌧ = 1)i|2, (13)

for ↵ 2 {F,A,M}. In the case of degenerate final
groundstates, we redefine the success probability as a
sum over individual success probabilities with equal
weights.

We study systems of N spins where 6  N  17 and
choose a fixed annealing time of T = 100 for all system
sizes. For each system size we generate 10000 instances
and for each instance calculate the success probability
and the instantaneous energy spectrum as a function of
time according to our four annealing schedules.
To better compare the performance of di↵erent Hamil-

tonians, we define two additional quantities. The first
is the success probability enhancement ratio, defined for
each type of Hamiltonian with coupled drivers, H↵, as
the percentage of instances for which H↵ provides the
best improvement over H0, i.e. it performs better than
H0 as well as the other two Hamiltonians with coupled
drivers. If we denote the number of such instances with
L↵ and the total number of instances with L then we
have,
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for ↵ 2 {F,A,M}.
To further quantify the actual enhancement resulting

from coupled driver terms we define the success probabil-
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probability resulting from H↵ to the success probability
resulting from H0,
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here � 2 {0, F, A,M} and as before ↵ 2 {F,A,M}. Note
that given this definition we always have P↵
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> 1.

III. NUMERICAL RESULTS

A. Success probability Enhancement

We start our analysis by determining the success prob-
ability enhancement ratio, R↵
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for ↵ 2 {F,A,M}, i.e.

the percentage of instances for which Hamiltonian H↵

with coupled driver terms provides the best success prob-
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taneously. To distinguish the e↵ect of flipping a pair
of spins (as opposed to a single spin flip due to HB)
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also consider an intermediate Hamiltonian with uniform
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In the latter case rij 2 {�1, 1} is randomly chosen, giv-
ing rise to an intermediate Hamiltonian with both fer-
romagnetic and antiferromagnetic couplings [12]. Here
the superscripts F , A and M refers to ferromagnetic,
antiferromagnetic and mixed, respectively.

Inserting either HA
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or HM
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in Eq. (7) results in non-

stoquastic total Hamiltonians (while ⌧ 6= 0, 1), while in-
serting HF

I
in Eq. (7) produces a stoquastic Hamiltonian

with coupled spin flip terms. In what follows we will refer
to the intermediate Hamiltonians as drivers with coupled
fluctuations, or simply as coupled drivers.

We compare the e↵ectiveness of Hamiltonians with
coupled drivers against the original Hamiltonian with an
uncoupled driver term, H0 (Eq. (5)), as our reference. To
make referencing easier we label the Hamiltonians with
coupled drivers as,
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where ↵ = F,A,M correspond to stoquastic, non-
stoquastic with uniform antiferromagnetic driver terms
and non-stoquastic with mixed-sign driver terms, respec-
tively. For the rest of this paper we use the same indices
for labeling various quantities such as success probabil-
ities, P↵, and minimum gaps, �↵, which result from
Hamiltonians H↵.

B. Methods and Metrics

Our main numerical tools are exact diagonalization, to
calculate the instantaneous energy spectra of the Hamil-
tonians H0 and H↵ as a function of time, and time-
dependent Schrödinger equation, to simulate the process
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tween | gi, the true groundstate of HP , obtained from
exact diagonalization and | ↵
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mate groundstate ofHP , resulting from numerically solv-
ing the time-dependent Schrödinger equation associated
with the Hamiltonian H↵. Therefore,
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for ↵ 2 {F,A,M}. In the case of degenerate final
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weights.
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each type of Hamiltonian with coupled drivers, H↵, as
the percentage of instances for which H↵ provides the
best improvement over H0, i.e. it performs better than
H0 as well as the other two Hamiltonians with coupled
drivers. If we denote the number of such instances with
L↵ and the total number of instances with L then we
have,

R↵

en
=

L↵

L
, (14)
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ity enhancement, for each instance and each Hamiltonian
with coupled driver terms, as the ratio of the success
probability resulting from H↵ to the success probability
resulting from H0,

P↵

en
=

P↵

P 0
| P↵ > P � , 8� 6= ↵, (15)

here � 2 {0, F, A,M} and as before ↵ 2 {F,A,M}. Note
that given this definition we always have P↵

en
> 1.

III. NUMERICAL RESULTS
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Stoquastic Coupled Hamiltonian: 

•   Improves a large fraction of instances 
•   The actual improvement is small 

Non-Stoquastic Coupled Hamiltonians: 

•   Improve smaller fractions of instances 
•   The actual improvement can be huge 

Which instances are affected by 
each type of Hamiltonian? 

Distribution of Success Probability Enhancement



Affected Instances: P Distribution
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Stoquastic Coupled Hamiltonian: 
•   Improves a large fraction of instances 
•   The actual improvement is small 
•   Tends to improve on easier problems

Non-Stoquastic Coupled Hamiltonians: 
•   Improve smaller fractions of instances 
•   The actual improvement can be huge
•   Mainly improves on harder problems 

What is the relation to the minimum gap?

Distribution of Success Probability Enhancement
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Stoquastic Coupled Hamiltonian:  
• Affects instances with a large range of gaps
• The size of the gap almost always increases.

Relation to the Size of Minimum Gap

The Stoquastic Hamiltonian seems to improve the 
probability by increasing the gap. 



P-XX ~ 95%

PX ~ 45%

3

Annealing Schedules: We consider two annealing schedules, each with di↵erent types of fluctuations as is sum-

marized below. Note that in all three cases s = t/⌧ 2 [0, 1] is the dimensionless linear time variable, with ⌧ bring the

total annealing time. The first annealing schedule corresponds to the familiar Hamiltonian of the form,

HL = (1� s)H0 + sHp, (35)

which for the choice of the initial Hamiltonian to be a simple transverse field, i.e.

H0 =

X

i

Xi, (36)

was originally proposed for adiabatic quantum computing. Here, in addition to Eq. (33) we also consider an initial

Hamiltonian that includes ferromagnetic coupling terms as well, which gives rise to,

H0 =

X

i

Xi �
X

i<j

XiXj . (37)

The second annealing schedule, gives rise to a total Hamiltonian of the form,

HF = (1� s)H0 + s(1� s)Hi + sHp, (38)

where the initial Hamiltonian is fixed to be,

H0 =

X

i

Xi (39)

and intermediate Hamiltonians assume the following two forms:

Hi = �
X

i<j

XiXj (40)

Hi = +

X

i<j

XiXj (41)

Hi =

X

i<j

(�1)
rijXiXj (42)

rij 2 {0, 1} (43)

Problem Hamiltonians: The problem Hamiltonian is always of the form,

Hp =

X

i<j

JijZiZj +

X

i

hiZi, (44)

on a fully-connected graph, i.e. i and j run over all pairs of spins in the system. Here we consider the Sherrington-

Kirkpatrick (SK) model where, Jij are randomly chosen from a continues Gaussian distribution with zero mean and

unit variance while the random fields, hi, can also be random or they can be set to zero. Note that the latter choice

leads to higher degeneracies and possibly to harder problems compared to hi 6= 0. Here we focus on the case where

hi = 0.

Metrics: We generally study success probability, residual energy and size of the minimum gap as measures for

comparing the performance of the above mentioned quantum fluctuations and annealing schedules. Here we focus

only on success probability, which we define as the overlap between the true groundstate of Hp and the approximate

groundstate resulting from numerically solving the time-dependent Schroedinger equation, i.e.

P (⌧) = |h 0| (s = 1)i|2. (45)

In the case of degenerate final groundstates, we redefine the success probability as the sum over individual success

probabilities with equal weights, i.e.

P (⌧) =

nX

i=1

|h i

0| (s = 1)i|2 (46)
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Coupled Quantum Fluctuations and Quantum Annealing

Layla Hormozi

The aim of this project is to understand the relative e↵ectiveness of coupled quantum fluctuations of the form ±XX

compared to a simple transverse field (X) fluctuation in quantum annealing. In what follows we briefly outline the
problem and set up the notation and then provide a summary of some of the results obtained so far from numerically
studying small size systems.

I. DEFINITIONS AND NOTATION

A. Annealing Schedules

We consider three annealing schedules, each with di↵erent types of fluctuations as is summarized below. Note that
in all three cases s = t/⌧ 2 [0, 1] is the dimensionless linear time variable, with ⌧ bring the total annealing time.

1. The Quadratic Schedule

The first annealing schedule, taken from Ref. [1], gives rise to a total Hamiltonian of the form,

HF = (1� s)H0 + s(1� s)Hi + sHp, (1)

where the initial Hamiltonian is fixed to be,

H0 =
X

i

Xi (2)

and intermediate Hamiltonians assume the following three forms:

Hi = 0, (3)

Hi = �
X

i<j

XiXj/n1,

Hi = +
X

i<j

XiXj/n2.

Here n1 and n2 are free parameters, which we set to identity for now. One of the features of this Hamiltonian is that
for all three cases of intermediate Hamiltonians it starts from the same unique groundstate.

2. The Linear Schedule

The second Hamiltonian is what has been traditional considered for adiabatic quantum annealing. We call it HL

and has the form,

HL = (1� s)H0 + sHp, (4)

where the initial Hamiltonian takes three di↵erent forms,

H0 =
X

i

Xi, (5)

H0 =
X

i

Xi �
X

i<j

XiXj/n1,

H0 =
X

i

Xi +
X

i<j

XiXj/n2.

Stoquastic:

Example1: 
N = 6

Success Probability & Minimum Gap



Stoquastic Coupled Hamiltonian: 
• Affects instances with a large range of gaps
• The gap always gets bigger.

Relation to the Size of Minimum Gap

Stoquastic Hamiltonians improve the probability by 
increasing the size of the gap ✔
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Stoquastic Coupled Hamiltonian: 
• Affects instances with a large range of gaps
• The gap always gets bigger.

Non-Stoquastic Coupled Hamiltonians: 
• Affects problems with smaller gaps
• No clear correlation with the change in the size of 
minimum gap 

Relation to the Size of Minimum Gap

Stoquastic Hamiltonians improve the probability by 
increasing the size of the gap 

What is going on here?

✔



Frustration and Degeneracy

Frustration in the X Component of the Spins

Near-degenerate States

1

H =

X
Xi +

X
XiXj +

X
JijZiZj +

X
hiZi

HSK =
1p
N

X

i<j

JijZiZj (1)

Hp =

p
NHSK +

X

i

hiZi (2)

H = (1� ⌧)Hs + ⌧(1� ⌧)N
1

N

X

i<j

XiXj + ⌧Hp (3)

H = f(⌧)Hs + �g(⌧)Hi + h(⌧)Hp. (4)

Here f , g and h are functions of the dimensionless an-

nealing parameter ⌧ = t/T 2 [0, 1] with T being the total

annealing time. In this work we choose these functions

as follows [? ]:

f(⌧) = 1� ⌧, (5)

g(⌧) = ⌧(1� ⌧), (6)

h(⌧) = ⌧. (7)

The additional parameter � is set to control the strength

of the middle term and in this work is chosen to be pro-

portional to the system size, i.e. � = N .

The starting Hamiltonian, whose groundstate is unique

and easy to calculate, is denoted by Hs. We follow the

tradition [? ] and choose this Hamiltonian to be the

transverse field applied to all spins, i.e.,

Hs =

NX

i=1

Xi. (8)

The problem Hamiltonian is denoted by Hp and in gen-

eral has the following form,

Hp =

NX

i<j=1

JijZiZj +

NX

i=1

hiZi, (9)

with hi and Jij being the coe�cients that determine a

specific optimization problem [? ]. Here we focus on the

Sherrington-Kirkpatrick (SK) model of Ising spin glass [?
]. The problem is defined on a fully connected graph, i.e.

i and j run over all pairs of spins in the system and hi

and Jij are randomly chosen from a continues Gaussian

distribution with zero mean. This problem is infinite-

dimensional in the thermodynamic limit and it has been

shown that its worst cases are NP-hard [? ] (Check

random fields.).

We consider three intermediate Hamiltonians with dif-

ferent types of coupled fluctuations as is summarized be-

low,

H
1
i = �

NX

i<j=1

XiXj (10)

H
2
i = +

NX

i<j=1

XiXj , (11)

H
3
i =

NX

i<j=1

(�1)
rijXiXj , (12)

where in the latter case rij 2 {0, 1} is randomly chosen,

hence giving rise to a Hamiltonian with both ferromag-

netic and antiferromagnetic couplings. We have also con-

sidered other combinations of plus and minus signs for the

XX couplings whose results are shown in the appendix.

Here the combination of Hp and Hi with antiferromag-

netic couplings (for both the uniform, Eq. (11), and the

mixed, Eq. (12) cases) will give rise to non-stoquatic total

Hamiltonians.

Note that in the computational (Z) basis, the local

e↵ect of each XiXj term is to flip the i
th

and j
th

spins

simultaneously. To distinguish the possible advantage of

flipping a pair of spins (compared to a single spin flip in

the case of Hs) in general from the specific e↵ects of non-

stoquasticity, we also study an intermediate Hamiltonian

with ferromagnetic couplings, Eq. (10).

We compare the e↵ectiveness of these Hamiltonians

against the Hamiltonian withHi = 0 as our reference. To

make referencing easier we label these four Hamiltonians

as follows:

H0 = ⌧Hs + (1� ⌧)Hp, (13)

H1 = ⌧Hs �N⌧(1� ⌧)H
1
i + (1� ⌧)Hp, (14)

H2 = ⌧Hs +N⌧(1� ⌧)H
2
i + (1� ⌧)Hp, (15)

H3 = ⌧Hs +N⌧(1� ⌧)H
3
i + (1� ⌧)Hp. (16)

In what follows, we use the same superscripts ↵ =

0, 1, 2, 3 for labeling various quantities such as success

probabilities and minimum gaps, which correspond to

these Hamiltonians.

A. Methods and Metrics

We study success probability and size of the mini-

mum gap as measures for comparing the performance of

the above mentioned quantum fluctuations and anneal-

ing schedules. We calculate the minimum gap during

the annealing process by exactly diagonalizing the to-

tal Hamiltonian along the evolution path. The success

probability is defined as the overlap between | 0i, the

true groundstate of Hp, and | ̃0(⌧ = 1)i, the approxi-

mate groundstate resulting from numerically solving the

Anti-ferromagnetic Couplings on a fully-connected graph

Additional Anti-crossings



PX ~ 20%

P+XX ~ 75%

Non-Stoquastic:
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Annealing Schedules: We consider two annealing schedules, each with di↵erent types of fluctuations as is sum-

marized below. Note that in all three cases s = t/⌧ 2 [0, 1] is the dimensionless linear time variable, with ⌧ bring the

total annealing time. The first annealing schedule corresponds to the familiar Hamiltonian of the form,

HL = (1� s)H0 + sHp, (35)

which for the choice of the initial Hamiltonian to be a simple transverse field, i.e.

H0 =

X

i

Xi, (36)

was originally proposed for adiabatic quantum computing. Here, in addition to Eq. (33) we also consider an initial

Hamiltonian that includes ferromagnetic coupling terms as well, which gives rise to,

H0 =

X

i

Xi �
X

i<j

XiXj . (37)

The second annealing schedule, gives rise to a total Hamiltonian of the form,

HF = (1� s)H0 + s(1� s)Hi + sHp, (38)

where the initial Hamiltonian is fixed to be,

H0 =

X

i

Xi (39)

and intermediate Hamiltonians assume the following two forms:

Hi = �
X

i<j

XiXj (40)

Hi = +

X

i<j

XiXj (41)

Hi =

X

i<j

(�1)
rijXiXj (42)

rij 2 {0, 1} (43)

Problem Hamiltonians: The problem Hamiltonian is always of the form,

Hp =

X

i<j

JijZiZj +

X

i

hiZi, (44)

on a fully-connected graph, i.e. i and j run over all pairs of spins in the system. Here we consider the Sherrington-

Kirkpatrick (SK) model where, Jij are randomly chosen from a continues Gaussian distribution with zero mean and

unit variance while the random fields, hi, can also be random or they can be set to zero. Note that the latter choice

leads to higher degeneracies and possibly to harder problems compared to hi 6= 0. Here we focus on the case where

hi = 0.

Metrics: We generally study success probability, residual energy and size of the minimum gap as measures for

comparing the performance of the above mentioned quantum fluctuations and annealing schedules. Here we focus

only on success probability, which we define as the overlap between the true groundstate of Hp and the approximate

groundstate resulting from numerically solving the time-dependent Schroedinger equation, i.e.

P (⌧) = |h 0| (s = 1)i|2. (45)

In the case of degenerate final groundstates, we redefine the success probability as the sum over individual success

probabilities with equal weights, i.e.

P (⌧) =

nX

i=1

|h i

0| (s = 1)i|2 (46)

Example 2: 
N = 6

Success Probability & Minimum Gap

Coupled Quantum Fluctuations and Quantum Annealing

Layla Hormozi

The aim of this project is to understand the relative e↵ectiveness of coupled quantum fluctuations of the form ±XX

compared to a simple transverse field (X) fluctuation in quantum annealing. In what follows we briefly outline the
problem and set up the notation and then provide a summary of some of the results obtained so far from numerically
studying small size systems.

I. DEFINITIONS AND NOTATION

A. Annealing Schedules

We consider three annealing schedules, each with di↵erent types of fluctuations as is summarized below. Note that
in all three cases s = t/⌧ 2 [0, 1] is the dimensionless linear time variable, with ⌧ bring the total annealing time.

1. The Quadratic Schedule

The first annealing schedule, taken from Ref. [1], gives rise to a total Hamiltonian of the form,

HF = (1� s)H0 + s(1� s)Hi + sHp, (1)

where the initial Hamiltonian is fixed to be,

H0 =
X

i

Xi (2)

and intermediate Hamiltonians assume the following three forms:

Hi = 0, (3)

Hi = �
X

i<j

XiXj/n1,

Hi = +
X

i<j

XiXj/n2.

Here n1 and n2 are free parameters, which we set to identity for now. One of the features of this Hamiltonian is that
for all three cases of intermediate Hamiltonians it starts from the same unique groundstate.

2. The Linear Schedule

The second Hamiltonian is what has been traditional considered for adiabatic quantum annealing. We call it HL

and has the form,

HL = (1� s)H0 + sHp, (4)

where the initial Hamiltonian takes three di↵erent forms,

H0 =
X

i

Xi, (5)

H0 =
X

i

Xi �
X

i<j

XiXj/n1,

H0 =
X

i

Xi +
X

i<j

XiXj/n2.



PX ~ 20%

P+XX ~ 75%

Non-Stoquastic:
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Annealing Schedules: We consider two annealing schedules, each with di↵erent types of fluctuations as is sum-

marized below. Note that in all three cases s = t/⌧ 2 [0, 1] is the dimensionless linear time variable, with ⌧ bring the

total annealing time. The first annealing schedule corresponds to the familiar Hamiltonian of the form,

HL = (1� s)H0 + sHp, (35)

which for the choice of the initial Hamiltonian to be a simple transverse field, i.e.

H0 =

X

i

Xi, (36)

was originally proposed for adiabatic quantum computing. Here, in addition to Eq. (33) we also consider an initial

Hamiltonian that includes ferromagnetic coupling terms as well, which gives rise to,

H0 =

X

i

Xi �
X

i<j

XiXj . (37)

The second annealing schedule, gives rise to a total Hamiltonian of the form,

HF = (1� s)H0 + s(1� s)Hi + sHp, (38)

where the initial Hamiltonian is fixed to be,

H0 =

X

i

Xi (39)

and intermediate Hamiltonians assume the following two forms:

Hi = �
X

i<j

XiXj (40)

Hi = +

X

i<j

XiXj (41)

Hi =

X

i<j

(�1)
rijXiXj (42)

rij 2 {0, 1} (43)

Problem Hamiltonians: The problem Hamiltonian is always of the form,

Hp =

X

i<j

JijZiZj +

X

i

hiZi, (44)

on a fully-connected graph, i.e. i and j run over all pairs of spins in the system. Here we consider the Sherrington-

Kirkpatrick (SK) model where, Jij are randomly chosen from a continues Gaussian distribution with zero mean and

unit variance while the random fields, hi, can also be random or they can be set to zero. Note that the latter choice

leads to higher degeneracies and possibly to harder problems compared to hi 6= 0. Here we focus on the case where

hi = 0.

Metrics: We generally study success probability, residual energy and size of the minimum gap as measures for

comparing the performance of the above mentioned quantum fluctuations and annealing schedules. Here we focus

only on success probability, which we define as the overlap between the true groundstate of Hp and the approximate

groundstate resulting from numerically solving the time-dependent Schroedinger equation, i.e.

P (⌧) = |h 0| (s = 1)i|2. (45)

In the case of degenerate final groundstates, we redefine the success probability as the sum over individual success

probabilities with equal weights, i.e.

P (⌧) =

nX

i=1

|h i

0| (s = 1)i|2 (46)

Example 2: 
N = 6

Success Probability & Minimum Gap

Coupled Quantum Fluctuations and Quantum Annealing

Layla Hormozi

The aim of this project is to understand the relative e↵ectiveness of coupled quantum fluctuations of the form ±XX

compared to a simple transverse field (X) fluctuation in quantum annealing. In what follows we briefly outline the
problem and set up the notation and then provide a summary of some of the results obtained so far from numerically
studying small size systems.

I. DEFINITIONS AND NOTATION

A. Annealing Schedules

We consider three annealing schedules, each with di↵erent types of fluctuations as is summarized below. Note that
in all three cases s = t/⌧ 2 [0, 1] is the dimensionless linear time variable, with ⌧ bring the total annealing time.

1. The Quadratic Schedule

The first annealing schedule, taken from Ref. [1], gives rise to a total Hamiltonian of the form,

HF = (1� s)H0 + s(1� s)Hi + sHp, (1)

where the initial Hamiltonian is fixed to be,

H0 =
X

i

Xi (2)

and intermediate Hamiltonians assume the following three forms:

Hi = 0, (3)

Hi = �
X

i<j

XiXj/n1,

Hi = +
X

i<j

XiXj/n2.

Here n1 and n2 are free parameters, which we set to identity for now. One of the features of this Hamiltonian is that
for all three cases of intermediate Hamiltonians it starts from the same unique groundstate.

2. The Linear Schedule

The second Hamiltonian is what has been traditional considered for adiabatic quantum annealing. We call it HL

and has the form,

HL = (1� s)H0 + sHp, (4)

where the initial Hamiltonian takes three di↵erent forms,

H0 =
X

i

Xi, (5)

H0 =
X

i

Xi �
X

i<j

XiXj/n1,

H0 =
X

i

Xi +
X

i<j

XiXj/n2.

Crosson et al, ‘14

Similar phenomenon has been reported for the worst cases of MAX 2-SAT. 
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Relation to the Size of Minimum Gap

Stoquastic Hamiltonian seems to improve the success 
probability by increasing the size of the minimum gap. 

Non-Stoquastic Hamiltonians might be improving the 
success probability by increasing the number of anti- 

crossings.  
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Stoquastic Coupled Hamiltonians:  
•    Improve large fractions of instances. 
•    Fractions grow with the system size. 
•    The actual improvement is small. 
•    Tend to improve on easier problems with larger gaps. 
•    Seem to improve the probability by increasing the minimum gap. 

Non-Stoquastic Coupled Hamiltonians:  
•    Improve smaller fractions of instances. 
•    Fractions remain constant as the system size grows.
•    The actual improvement can be huge.
•    Mainly improve on harder problems with smaller gaps.
•    Might be improving the probability by increasing the number of 
anti-crossings.  

Summary
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